

Linux
For

BCT TM3
User Guide

Document Reference: BCTTM3 Linux User Guide

Document Issue: 1.4.0

Associated SDK release: 1.2

Authors: D Robinson, M Olejnik, C Richardson

2

Contents

1. Introduction .. 4

1.1 Models .. 4

2. Environment Setup ... 4

2.1 Embedded Linux Components .. 4

2.2 Installation of the Embedded Linux build components .. 5

2.2.1 Git repo setup for the source trees ... 7

2.3 Development Machine Setup ... 8

3. Building required components for Ubuntu OS ... 9

3.1 Installing the Ubuntu OS root file system ... 9

3.2 Compiling the Linux kernel ... 10

3.3 Using customised Linux kernel device tree ... 11

3.4 U-Boot Bootloader – Ported (http://www.denx.de/wiki/U-Boot) ... 12

3.5 Ubuntu OS components summary .. 12

4.0 Building embedded Linux with Buildroot.. 13

4.1 Buildroot introduction .. 13

4.2 QT5 .. 13

4.3 QT6 .. 14

4.4 Buildroot outputs .. 14

4.5 Buildroot demo applications ... 15

5. Updating the firmware / software on TM3 ... 15

5.1 Packlinux tool for producing installation images .. 16

5.2 PhoenixCard tool ... 17

5.3 PhoenixUSB Pro tool ... 19

6. BCT TM3 Hardware Setup in Linux .. 20

6.1 Host board 50way connector .. 20

6.2 Debug Serial Console .. 21

6.3 BCT TM3/HB5 Serial Ports ... 21

6.3.1 RS-485 Manual Transmit Control ... 21

6.3.2 RS-485 Automatic Transmit Control .. 21

6.3.3 UART DMA and FIFO Threshold ... 22

6.4 BCT TM3 GPIO ... 22

3

6.5 TM3 Wi-Fi Operation .. 23

6.5.1 TM3 Modules without WiFi ... 23

6.5.2 TM3 Modules with WiFi ... 24

6.6 TM3 Audio ... 24

6.7 HB8 uSD Card .. 25

6.8 TM3 Watchdog .. 25

6.9 TM3 Power management ... 25

6.10 TM3 Class-D amplifier ... 25

6.11 LCD Backlight ... 25

6.12 HB8 RTC ... 26

6.13 HB8 and HB9 vs. Lite versions ... 26

6.13.1 HB8 USB3 ... 26

6.13.2 HB8 HDMI out .. 27

7. UBOOT operation .. 28

7.1 Configuring uboot ... 28

7.2 Uboot environment variables ... 28

7.3 Uboot configuration examples ... 29

7.3.1 Changing the Uboot boot delay ... 29

7.3.2 Booting the Linux kernel over tftp and mounting a rootfs over NFS 29

7.3.3 Boot a root filesystem from the HB8 uSD .. 29

8. QT5 Application development introduction ... 29

8.1.1 Install QT Creator to the development machine ... 29

8.2.1 Setup the TM3 QT5 environment in QT Creator.. 29

8.2.2 Setup a simple QT5 “Hello World” application .. 33

8.3.1 Setup the TM3 QT6 environment in QT Creator.. 35

8.3.2 Setup a simple QT6 “Hello World” application .. 38

8.3.3 Setup a simple QT6 QML “Hello World” application ... 41

8.3.4 Setup an interactive QT6 QML application .. 43

8.4.1 How to deploy SSH key to a new TM3 device in QT Creator ... 46

Appendix A - Known Problems.. 48

Appendix B - Change Log .. 49

4

1. Introduction

The content of this document provides information required to start building Linux operating systems

for the BCT TM3 platform. It covers:

• The tools and components required for building a Linux operating system

• How to install the build components

• How to compile the U-Boot boot loaders stand alone

• How to compile the Linux Kernel 4.9.118 stand alone

• How to setup a root file system using Ubuntu 18.04 LXDE

• How to build a root file system including QT5 using build root

• How to boot Linux on the TM3 platform

• How to setup and deploy a simple QT5 application to TM3

The BCT TM3 platform consists of TM3 module and several host boards. This document is applicable

for HB8 and HB9 host boards including their Lite versions. The HB8 and HB9 host boards are

functionally identical; the Lite versions lack the following connectors: HDMI, USB3, M.2. Unless

explicitly mentioned throughout the document, when referring to HB8 it also means it is applicable to

HB9 host boards.

1.1 Models

Note that there are two TM3 models:

• TM3A – 1GB Low Power DDR3

• TM3B – 2GB Low Power DDR4

It is important to make sure to use an image for the correct TM3 model. You can distinguish the

model based on the presence of tm3a or tm3b in the filename.

2. Environment Setup

2.1 Embedded Linux Components

The components involved in a typical Embedded Linux system targeting the ARM architecture are:

• Bootloader

• Linux Kernel

• Root file system.

U-boot 2014.07 was ported to provide the bootloader functionality for the TM3.

5

Linux kernel 4.9.118 have been ported to be compatible with the BCT TM3 platform.

Pre-built Ubuntu root file systems are provided for demonstration purposes. As an alternative to

Ubuntu, a Buildroot environment is provided to allow bespoke root file systems to be generated for

the TM3 platform. Section 3 describes the procedure for building an image with the Ubuntu file

system; section 4 describes the procedure for building an image with Buildroot.

The TM3 software components above have all been tested to compile using an Ubuntu 18.04 LTS and

Ubuntu 22.04 LTS development machines.

2.2 Installation of the Embedded Linux build components

Create the top-level build BSP directory and grant it universal read/write/execute access as follows:

cd /
sudo mkdir embedded

sudo chmod 777 embedded
cd embedded

Copy the latest TM3 Linux components to the “/embedded” directory. Sources can be distributed in

different ways, but usually they can be downloaded from our web site.

https://www.bluechiptechnology.com/product/tm3/

Download the Linux source code for TM3 using the command:

cd ~
wget http://dl.bluechiptechnology.com/dl/tm3/software/tm3linuxv110.tar.bz2
wget http://dl.bluechiptechnology.com/dl/tm3/software/tm3linuxv110.tar.bz2.md5

Check that the integrity of the download is OK by issuing the following command:

md5sum -c tm3linuxv110.tar.bz2.md5

Extract the tar ball by issuing the command:

cd /

tar xvjf ~/tm3linuxv110.tar.bz2

Setup git to pull the latest code from Blue Chip Technology (requires Internet connection).

sudo apt-get install git

Kernel 4.9

cd /embedded/projects/tm3/lichee/linux-4.9

git status

git pull

Bootloader

https://buildroot.org/
https://www.bluechiptechnology.com/product/tm3/

6

cd /embedded/projects/tm3/lichee/bootloader

git pull

cd /embedded/projects/tm3/lichee/brandy

git pull

Buildroot

cd /embedded/projects/tm3/buildroot

git pull

7

Packlinux tool

cd /embedded/projects/tm3/packlinux

git pull

Once extracted the build components will be laid out in the following structure on the development

machine. The BSP is capable of building images containing kernel 4.9.118. The first directory

(“embedded”) is the folder created in the root of the file system.

TM3 embedded development directory: /embedded/projects/tm3/

Directory Description

lichee/bootloader Source code for SPL bootloader including configuration for BCT TM3

lichee/brandy Source code for U-boot bootloader including configuration for BCT TM3

lichee/linux-4.9 4.9.118 Linux kernel source code with configuration for BCT TM3

packlinux A tool for creating Linux installation images for BCT TM3.

buildroot Buildroot top directory, containing buildroot 2022.02 and buildroot-2024.02.5
source release with configurations for building root file system and installation
images for TM3.

rootfsimages Directory containing prebuilt root file systems, including:

Demo Ubuntu 22.04 image distributed with TM3.

2.2.1 Git repo setup for the source trees

In order to keep the source repositories up-to-date with Blue Chip’s patches a git remote

repositories are set-up. Future source code modifications of the bootloader , kernel and buildroot

can be downloaded and applied by issuing git pull command. When doing so, ensure the

command is issued in the right directory while switched to the master branch. For example, to

update Linux kernel source code issue the following commands:

cd /embedded/projects/tm3/lichee/linux-4.9

git checkout master

git pull

Please note that the Blue Chip’s public git repositories are read only and will not let you to push your

modifications and branches.

If you plan to do custom modification of the source repositories and want to keep track of your

changes you may want to add your own git remote servers. To do that, issue the following command

in the target source tree (kernel, bootloader, buildroot etc.):

git remote add origin_new <url_to_git_server_or_path_to_bare_git_repository>

You can then push new branches to your git repository by the following command:

git push origin_new <branch_name>

8

2.3 Development Machine Setup

Where possible, build scripts have been provided for the various components included with the Linux

SDK for BCT TM3. These scripts presume the following has been setup on the Ubuntu 18.04 LTS

development machine.

• A TFTP server serving files from a tftpboot directory in the root of the filesystem. (/tftpboot)

• An NFS server serving files from /nfs.

The following links provide information on setting up an NFS and TFTP server.

http://www.debianhelp.co.uk/tftp.htm

Setup Required

sudo apt-get install tftpd

sudo mkdir /tftpboot

sudo chmod 777 /tftpboot

http://www.debianhelp.co.uk/nfs.htm

Setup Required

sudo apt-get install nfs-kernel-server nfs-common portmap

cd /

sudo mkdir nfs

In the file /etc/exports , add the line

/nfs/rootfs *(rw,sync,no_root_squash)

To use the nfs feature, the /nfs directory should be symbolically linked to the root file system directory.

Either provide your own rootfs or use the supplied example rootfs stored in rottfsimages directory

(see above table). From the /nfs directory issue the following command.

sudo ln -s /embedded/projects/tm3/rootfs /nfs/rootfs

The following packages are known to be required on an Ubuntu 18.04 development machine to

successfully build the components.

sudo apt-get install build-essential
sudo apt-get install mkbootimg
sudo apt-get install flex
sudo apt-get install bison
sudo apt-get install lzop
sudo apt-get install ncurses-dev
sudo apt-get install gcc-aarch64-linux-gnu

sudo apt-get install gcc-arm-none-eabi

sudo apt-get install scons

http://www.debianhelp.co.uk/tftp.htm
http://www.debianhelp.co.uk/nfs.htm

9

sudo apt-get install cmake git

sudo apt-get install mkbootimage

sudo apt-get install android-tools-fsutils

sudo dpkg --add-architecture i386

sudo apt-get update

sudo apt-get install libc6:i386 libncurses5:i386 libstdc++6:i386

sudo apt-get install zlib1g:i386

If you build on Ubuntu 22.04 or more recent Ubuntu OS, install the packages above (listed for

Ubuntu 18.04) and then issue the following commands. They install extra tools and ensure the gcc

version 9 is set as the default compiler:

sudo apt install g++-9

sudo apt install gcc-9

sudo ln -sf /usr/bin/g++-9 /usr/bin/g++

sudo ln -sf /usr/bin/gcc-9 /usr/bin/gcc

sudo apt install android-sdk-libsparse-utils

Before compiling various standalone Linux components, we must configure our target hardware

platform for the ‘lichee’ build tree. A script is provided to do that, issue the following commands:

cd /embedded/projects/tm3/lichee

./build.sh config

A series of options will be displayed on the terminal. Select the following options:

• Platform: 0 (android)

• Chip: 19 (tm3)

• Kernel version: 0 (linux-4.9)

• Board: 0 (hb5)

3. Building required components for Ubuntu OS

3.1 Installing the Ubuntu OS root file system

There are many Linux distributions available that are compatible with BCT TM3. Ubuntu was chosen

as the main distribution for TM3, as it has a large pre-compiled package database, and easy to use

configuration tools. Ubuntu is not the ideal choice for all Linux projects, but it will allow a basic

operating system to be constructed quickly to allow evaluation of the BCT TM3. For smaller embedded

OS requirement consider using Buildroot to generate a root file system from scratch. See section 4 for

details.

10

The process of creating an Ubuntu root file system for BCT TM3 consists of the following steps.

• Extract an Ubuntu image into the staging directory

• Add kernel modules and other specific support to the root filesystem.

• Boot the generated Ubuntu root filesystem on a BCT TM3

• Configure the Ubuntu root filesystem using, apt-get, synaptic package manager, or another

package manager

To support the BCT TM3 hardware and kernel, various files need to be copied to the root filesystem.

To simplify this process all build components that need to modify the root filesystem are configured

to do so at the nfs staging location, “/nfs/rootfs”. We must extract a root filesystem as a starting point

to this location.

For convenience a pre-built root filesystem is included in the TM3 download. It can be extracted using

the following commands.

cd /embedded/projects/tm3/

./extractubunturootfsimage.sh

At this point Linux Kernel modules and any other specific support files must be added to the root file

system. The following sections describe this process.

3.2 Compiling the Linux kernel
To compile the Linux kernel, we must enter the root of the kernel source tree, optionally make some

configuration changes and use make to start the compile. Issue the following commands.

cd /embedded/projects/tm3/lichee/linux-4.9/

source ./setenv-arch64.sh

make tm3linux_defconfig

./build.sh

When the compilation process has completed it will leave a Linux kernel (Image) at,

“./arch/arm64/boot/Image”, and, “/tftpboot/Image”.

The TM3 kernel implements the device tree model for configuring a hardware platform. The TM3

kernel includes several configurations for the various versions of HB8 and HB9 host boards.

Kernel file definition Description

tm3-hb8-43-c.dtb HB8 with 4.3 Inch LCD and capacitive touch screen

tm3-hb8-43-r.dtb HB8 with 4.3 Inch LCD and resistive touch screen

tm3-hb8-7-c.dtb HB8 with 7 Inch LCD and capacitive touch screen

tm3-hb8-7-r.dtb HB8 with 7 Inch LCD and resistive touch screen

tm3-hb8-9-c.dtb HB8 and HB9 with 9.7 Inch LCD and capacitive touch screen

11

tm3-hb8-12-c.dtb HB8 and HB9 with 12 Inch LCD and capacitive touch screen

build.sh is an example of a script file that simplifies the process of building BCT TM3 Linux

components. Please study the script for an understanding of the build steps and built components.

If changes are required to the kernel configuration the command “make menuconfig” can be used

to present a menu based configuration utility for the Linux kernel.

If you change the configuration your new configuration can be saved with

make savedefconfig

cp defconfig arch/arm64/configs/tm3linux_defconfig

rm defconfig

Once the kernel has been compiled, the kernel modules must be copied to the root filesystem. Issuing

the following command performs this task.

sudo ./installmodulesrootfs.sh

The modules are installed to the rootfs directory where the root filesystem that was previously

extracted to in section 3.1.

3.3 Using customised Linux kernel device tree
When new peripherals are used with TM3 HB8 host board or if TM3 module is hosted on a custom

board then then extra configuration may be needed. Two common actions are usually required to

support a peripheral in Linux kernel:

1. An existing Linux driver has to be added to the kernel configuration (see paragraph related to

menuconfig build option in section 3.2 for more information).

2. For peripherals not connected over USB bus (typically SPI or I2C bus) a change in device tree

file is often required.

For simple customisation cases the relevant device tree file (name starting with tm3-hb8* and ending

with *.dts) located in arch/arm64/boot/dts/sunxi/ directory can be modified.

For complex solutions with customised host board a new device tree file might be preferred. To add a

new device tree for customised TM3 board (for example the file name is tm3-custom.dts) do the

following:

• Copy over the tm3-custom.dts device tree file (either hand crafted or provided by Blue Chip

Technology) to arch/arm64/boot/dts/sunxi/ directory in the Linux kernel source tree.

• Modify arch/arm64/boot/dts/sunxi/Makefile, locate the line starting with dtb-

$(CONFIG_ARCH_SUN50IW6P1) and add the text "tm3-custom.dtb \" to the list of device

trees. For example like that:

 ...

 tm3-hb8-12-c.dtb \

 tm3-custom.dtb \

12

 tm3-hb5-7-c.dtb \

 ...

Note that the device tree source files have .dts extension, and the same files compiled into binary

form have .dtb extension.

When you rebuild the kernel (see chapter 3.2 for more information) your new device tree binary file

(tm3-custom.dtb) is produced in arch/arm64/boot/dts/sunxi/ directory, providing there was

no syntax error in the device tree source file. Use that device tree binary file to produce Linux

installation image via the 'packlinux' tool (see chapter 5.1 for more information). Copy the tm3-

custom.dtb into packlinux/linuxfiles directory and then pass parameter '-d tm3-custom.dtb'

to the 'pack' tool to create your installation image with that device tree built in. If you use buildroot

build system to produce the Linux installation image then you can pass the custom device tree name

to the list of boards as described in paragraph related to '-menuconfig' buildroot option in section

4.2.

3.4 U-Boot Bootloader – Ported (http://www.denx.de/wiki/U-Boot)
U-Boot 2014.07 has been ported to work with TM3. Its purpose is to initialise the hardware, and boot

a Linux operating system.

To build U-Boot for BCT TM3 issue the following commands.

cd /embedded/projects/tm3/lichee/brandy/

source ./setenv-awtools.sh

export -n ARCH

cd u-boot-2014.07/

make distclean

make tm3linux_config

./buildtm3.sh

The compiled boot loader file "uboot.bin" is copied to the /tftpboot directory.

3.5 Ubuntu OS components summary

So far this document has described how to set up a build environment and how to build the various

components of a Linux Ubuntu operating system for BCT TM3. The built components are as follows:

Component Location
Ubuntu Root
file system

/embedded/projects/tm3/rootfs

Linux Kernel /embedded/projects/tm3/lichee/linux-4.9/arch/arm64/boot/Image
Device tree
configurations

/embedded/projects/tm3/lichee/linux-4.9/arch/arm64/boot/dts/sunxi/tm3*.dtb

U-Boot /tftpboot/uboot.bin

http://www.denx.de/wiki/U-Boot

13

4.0 Building embedded Linux with Buildroot

4.1 Buildroot introduction

Buildroot is a build system that aids the process of building various components of an Embedded

Linux system in a single environment. We think Buildroot is easy to get to grips with, and provides a

reasonable amount of package support.

Buildroot 2022.02 is provided in the Linux download for TM3. It contains a sample configuration

which builds the Linux kernel and a root file system. An installation image for TM3 is also produced.

Buildroot 2024.08 is also present in our buildroot git repository to provide QT6 libraries and

examples.

Please note that to reduce size of the target root file system either QT5 or QT6 libraries are built

with the target system. Support for QT6 in Buildroot (Buildroot release 2024.08) is still in progress

and several QT submodules are missing.

The missing QT6 submodules are: qtwebview, qtwebengine, qtwebchannel, qtvirtualkeyboard,

qtspeech, qtsensors, qtremoteobjects, qtquicktimeline, qtquickeffectmaker, qtquick3dphysics,

qtquick3d, qtpositioning, qtnetworkauth, qtmultimedia, qtlottie, qtlocation, qtimageformats,

qthttpserver, qtgrpc, qtgraphs, qtdoc, qtdatavis3d, qtconnectivity, qtactiveqt, qt3d.

Most of the submodules mentioned above do exist in QT5, so consider using QT5 if your project

depends on these QT submodules.

4.2 QT5

This configuration will build a root file system containing QT5 libraries and QT5 sample applications.

To aid in remote QT5 application deployment, the image is configured with an SSH server, and will

print the local IP address to the LCD screen at boot time. The root user is configured with a password

of “password”.

To build this configuration issue the following commands. This will generate both TM3A and TM3B

images (Note that it is important to ensure your packlinux repository is also up to date).

cd /embedded/projects/tm3/buildroot

./build_qt5.sh

Please note that the build of this configuration might take several hours depending on the machine

you build on. Also, make sure there is enough of free disk space on the build machine. Typically you

will need approx. 20 GB of free disk space. All installation images take around 4 GBytes. You can

reduce the number of produced installation images by removing certain boards from the build list.

To do that run the build script with '-menuconfig' parameter:

./build_qt5.sh -menuconfig

A buildroot configuration screen will be presented. Navigate to 'System configuration -->' menu item

and scroll down to the very last item that lists various TM3 boards. Trim the list to a single board to

14

reduce the build's disk space requirements. If you use a custom board device tree binary file (see

section 3.3), put its name to the list to produce a customised buildroot installation image. Save and

exit the configuration screen by pressing Tabulator, Arrows and Enter keys. The build process will

continue.

If you'd like to configure the Linux kernel during the buildroot build, then start the buildroot build

script with '-kernel-menuconfig' parameter:

./build_qt5.sh -kernel-menuconfig

The kernel menu configuration will be displayed at the end of the build when the kernel build stage

is initiated. The recommended procedure is to produce the default kernel build first (without using

the -kernel-menuconfig parameter) and then - once the whole build is finished - to run the build

script again, this time passing the -kernel-menuconfig parameter. This ensures that the whole build

is not stuck waiting for the user input. Also, the second build will be much quicker, and the kernel

menu configuration is presented sooner.

Note that you can run both buildroot menu configuration and kernel menu configuration during the

single build like this:

./build_qt5.sh -menuconfig -kernel-menuconfig

If you've reconfigured buildroot to a configuration that no longer builds (conflicting selection of

packages or other errors), you can reset to a clean state by deleting the whole ‘output_qt5’

subdirectory including its contents. You may want to back-up the existing configuration file

‘output_qt5/.config’ to preserve your previous customisations.

4.3 QT6

Follow the same procedure as for QT5, to build buildroot for QT6 by using build_qt6.sh build script

(make sure to use ‘git pull’ to obtain the latest commits for buildroot). The same parameters for

configuration of Buildroot and Linux kernel are usable for build_qt6.sh.

cd /embedded/projects/tm3/buildroot

./build_qt6.sh

4.4 Buildroot outputs

After the build completion of the example configurations, the built components of the embedded

Linux system are as follows:

QT5

Component Location
Root file system /embedded/projects/tm3/buildroot/output_qt5/images/rootfs.tar
Linux Kernel /embedded/projects/tm3/buildroot/output_qt5/kernel/Image
Linux Kernel
modules

/embedded/projects/tm3/buildroot/output_qt5/kernel/lib/modules

15

Device Tree
Configurations

/embedded/projects/tm3/buildroot/output_qt5/kernel/*.dtb

Installation images /embedded/projects/tm3/buildroot/output_qt5/images/tm3_*.img

QT6

Component Location

Root file system /embedded/projects/tm3/buildroot/output_qt6/images/rootfs.tar

Linux Kernel /embedded/projects/tm3/buildroot/output_qt6/kernel/Image

Linux Kernel
modules

/embedded/projects/tm3/buildroot/output_qt6/kernel/lib/modules

Device Tree
Configurations

/embedded/projects/tm3/buildroot/output_qt6/kernel/*.dtb

Installation images /embedded/projects/tm3/buildroot/output_qt6/images/tm3_*.img

4.5 Buildroot demo applications
The Buildroot sample configuration also builds QT demo programs that can be run on TM3 HB8 after

the Buildroot installation image is installed on the TM3 eMMC (see the next section how to do that).

The QT5 demos can be found in /lib/qt/examples directory on the target file system. The QT6

demos can be found in /usr/examples directory on the target file system. To run the demo, simply

navigate to the demo directory either from a serial terminal or from SSH session connected to your

TM3 device. Then select the demo of your choice by entering subdirectories further on the path. The

demo executable usually has the same name as the final subdirectory. Run the demo by issuing:
./<name_of_the_demo>

For example, to run the ‘tabdialog’ demo on QT6 buildroot, use the following commands:
cd /usr/examples/widgets/dialogs/tabdialog/
./tabdialog

5. Updating the firmware / software on TM3

WARNING: the installation fully overwrites all contents of the TM3's internal storage. Make sure

you've backed all important files up.

WARNING: the installation fully overwrites all contents of the uSD card image. Make sure you've

backed all important files up

Once the QT demo is fully built the installation images are produced in the

/embedded/projects/tm3/buildroot/output_qt5/images or

/embedded/projects/tm3/buildroot/output_qt6/images directory.

The name of the image is tm3_linux_<*>.img where the <*> stands for model, host board, screen

size, touch screen type. For example this file:

tm3_linux_tm3b_hb8-7-c.img

is produced for TM3B HB8 host board with a 7" screen and a capacitive touch screen.

16

5.1 Packlinux tool for producing installation images
A tool for creating custom installation images with Linux OS is available in

/embedded/projects/tm3/packlinux directory. This tool is used to produce Buildroot QT5

installation images, but can be also used for your customised OS releases.

Note: you can skip this step if you are building Buildroot OS. The build script of the Buildroot does

this step automatically as a part of the build process.

To produce your custom installation image, copy the following components to the target location as

follows.

Component Location
Root file system /embedded/projects/tm3/packlinux/linuxfiles/rootfs.ext4
Linux Kernel /embedded/projects/tm3/packlinux/linuxfiles/Image
Device Tree
Configurations

/embedded/projects/tm3/packlinux/linuxfiles/*.dtb

U-boot (optional) /embedded/projects/tm3/packlinux/chips/tm3/bin/u-boot-tm3.bin

Note that the root file system has to be provided as a partition image, in this case ext4 partition.

To create an ex4 partition image from a .tar.gz file issue the following command:

sudo virt-make-fs --size=+200M --type=ext4 rootfs.tar.gz rootfs.ext4

virt-make-fs tool is part of the ‘libguestfs-tools‘ package provided by Ubuntu.

The rootfs.ext4 file can be optimised for size by a tm3simg tool found in

/embedded/projects/tm3/packlinux/tools directory. To optimise the rootfs partition file use the

following command:

cd /embedded/projects/tm3/packlinux/

sudo tools/tm3simg linuxfiles/rootfs.ext4 linuxfiles/srootfs.ext4

To produce a TM3 installation image issue the following commands.

cd /embedded/projects/tm3/packlinux/

./pack -z tm3b -b hb5 -d tm3-hb8-9-c.dtb -r srootfs.ext4

An installation image file “tm3_linux_tm3b_hb8-9-c.img” will be produced in the current directory.

Such installation image file can be used with the installation tools described in sections 5.2 and 5.3.

The ‘pack’ tool’s command line arguments are as follows:

-b <board> : defines target board. Use “hb5”. All HB8 and HB9 boards use “hb5” board

configuration option when used with the ‘pack’ tool.

-d <dtb_file>: defines the Device tree file to use. The file must exist in packlinux/linuxfiles

subdirectory.

-r <part_file> : defines the rootfs partition file (for example rootfs.ext4). The partition file can be

either a raw or sparse image. Sparse images may take significantly less space depending on the

17

partition size and its contents. To convert raw image to a sparse image use tm3simg command (see

above, do not use img2simg which is not compatible). The partition file (rootfs.ext4) file must exist in

‘packlinux/linuxfiles’ subdirectory.

-z <tm3 model>: defines the TM3 model to use. Currently either tm3a or tm3b. If this parameter

isn’t specified tm3b is assumed.

5.2 PhoenixCard tool
PhoenixCard tool populates a uSD card with an OS installer. Such uSD card – when booted on TM3

HB5 board – installs the full operating system on TM3 internal storage.

To use the tool, transfer the appropriate OS image file (created by Buildroot or by the Packlinux tool)

to your Windows PC, along with the installation archive phoenixcard4.1.3.zip downloaded from:

https://downloads.bluechiptechnology.com/tm3/software/tools/phoenixcard4.1.3.zip

Unzip the phoenixcard4.1.3.zip and run the PhoenixCard.exe file. Dismiss the "updatever" dialog

presented during start.

The steps to produce the installation uSD card and to install the OS image to TM3 internal storage

are as follows:

1) Insert a uSD card into your PC (or use USB card reader). The uSD card drive should be displayed in

the list in the middle of the tool's window. Ensure the drive item's checkbox is checked.

2) Ensure the Work Type is set to Product.

3) Select the installation image. Use the file produced by the QT5 buildroot build or Packlinux tool.

4) Click the Burn button, the image writing process should start. A progress bar should be displayed

next to the uSD drive item in the Status column.

5) After the writing process is finished the uSD drive item turns green and the log window shows "M:

Burn End ..." message. Close the Phoenixcard tool, eject the uSD card.

https://downloads.bluechiptechnology.com/tm3/software/tools/phoenixcard4.1.3.zip

18

6) Ensure the TM3 HB8 board is turned off. Plug in the uSD card prepared by the Phoenixcard tool to

TM3 HB8 host board uSD card slot.

7) Power on the TM3 HB8 board. An installation progress bar should be displayed.

8) Wait for the installation to finish. A message “Complete. Remove card and reboot.” will be

displayed on the screen.

19

9) Power the TM3 board off and eject the uSD card from the HB8 board.

10) Power the TM3 board on. The board will boot the newly installed OS from the internal storage.

5.3 PhoenixUSB Pro tool
PhoenixUSB Pro is a Windows tool that can install an operating system on TM3 module via

connected USB cable. The tool can handle installation of several connected TM3 devices at the same

time and requires only minimal user interaction.

To use the tool, transfer the appropriate OS image file (created by Buildroot or by the Packlinux tool)

to your Windows PC, along with the installation archive PhoenixUSBPro_v4.0.0.msi downloaded

from:

https://downloads.bluechiptechnology.com/tm3/software/tools/PhoenixUSBPro_v4.0.0.msi

Install the msi archive and run the PhoenixUSBPro.exe file. The steps to install an operating system

to TM3 HB5 are as follows:

1) Click the Image button and select the installation image file produced by the QT5 buildroot build

or Packlinux tool.

2) Click Start button. The big circular indicator on the top right of the application window should turn

green. At this point TM3 devices can be installed.

3) Power the TM3/HB8 board off. Connect the USB cable between the PC and USB Device port on

HB8 labelled as P11.

4) Press and hold the BOOT_MODE# button (the button terminals are exposed to 50 way connector,

or to a Picoblade connector P1). Power the TM3/HB8 on while keeping the BOOT_MODE# button

pressed.

5) When you hear the Windows jingle notifying that a new USB device was plugged-in, you can

release the BOOT_MODE# button. The application will discover the connected TM3 board (it may

take up to 40 seconds) and start the OS installation.

6) When the installation progress bar gets full the installation is complete. Power the TM3/HB8 off

and then unplug the USB cable. You can install another TM3/HB8 device by going back to step 3)

https://downloads.bluechiptechnology.com/tm3/software/tools/PhoenixUSBPro_v4.0.0.msi

20

Note that when the installation mode has been started (step 2) the application prevents accidental

closure of its window. To close the application, click the Stop icon first, and then close the window as

usual.

6. BCT TM3 Hardware Setup in Linux

6.1 Host board 50way connector
The pin-out of the host board 50way connector is as follows:

21

6.2 Debug Serial Console
Linux and U-boot for BCT TM3 heavily relies on access to a serial console. By default, U-boot and Linux

are configured to use the RS232 port available on pins 21 and 23 of the 50w connector. By default,

the board is set to communicate at 115200, 8, n, 1. Before turning the TM3 on for the first time it is

recommended that this port is connected to a PC with terminal emulator software running. E.g.

HyperTerminal.

Please note that it is not TTL logic level UART but RS232, therefore you may need RS232 to USB adapter

to use the serial port with a modern PC that does not have a serial COM port connector.

6.3 BCT TM3/HB5 Serial Ports

The serial ports on the host boards are mapped as follows:

Host board 50w connector pins Linux Device Name
COM2_TX, COM2_RX /dev/ttyS1
CTX3_P, CTX3_N, CRX3_P, CRX3_N /dev/ttyS3
COM1_TX, COM1_RX /dev/ttyS0 (Linux console port)

6.3.1 RS-485 Manual Transmit Control

/dev/ttyS3 is an RS485 / RS422 compatible port which has a transmit enable signal. This signal can be

controlled using GPIO 386. From the Linux console this signal can be manipulated using the

commands:

echo 386 >> /sys/class/gpio/export

echo out >> /sys/class/gpio/gpio386/direction

echo 1 >> /sys/class/gpio/gpio386/value

echo 0 >> /sys/class/gpio/gpio386/value

6.3.2 RS-485 Automatic Transmit Control
To improve software efficiency when communicating over an RS485 interface it is possible to

configure the TM3 Linux kernel to automatically control the transmit enable. The Linux API for

configuring the UART in RS-485 mode can be viewed using the following link.

https://www.kernel.org/doc/Documentation/serial/serial-rs485.txt

The BCT application note RS485_BETA_APP_NOTE also provides useful information on implementing

RS-485 with the TM3 platform.

https://downloads.bluechiptechnology.com/tm1/Documentation/RS-

485_Application_Note_For_BCT_Beta.pdf

https://www.kernel.org/doc/Documentation/serial/serial-rs485.txt
https://downloads.bluechiptechnology.com/tm1/Documentation/RS-485_Application_Note_For_BCT_Beta.pdf
https://downloads.bluechiptechnology.com/tm1/Documentation/RS-485_Application_Note_For_BCT_Beta.pdf

22

6.3.3 UART DMA and FIFO Threshold
The TM3 UART driver in the Linux kernel is designed to be efficient at high throughputs and baud

rates. One technology that the driver uses is DMA (direct memory access) to provide efficient

transfer of data. A second technique that the driver uses is setting a high FIFO threshold to limit the

amount of interrupts requiring software servicing. While these driver optimisations give good

performance and efficiency at high throughputs, this is not always the case for low baud rates and

small amounts of data which tends to be the case with protocols using RS-485.

To allow the DMA function to be enabled a file called ‘dmaenabled’ has been added to the sysfs for

UARTS. To enable UART DMA for the RS485 UART on TM3 the following command can be issued at a

console or through application software.

echo 1 > /sys/class/tty/ttyS3/device/dmaenabled

Two values are valid: 0 to disable the DMA, 1 to enable it.

Note: when setting the DMA, it must be done before the application software opens the UART

device file.

To allow the UART FIFO threshold to be configured a file called ‘rxfifothreshold’ has been added to

the sysfs for UARTS. To modify the UART FIFO threshold to 1 for the RS485 UART on TM3 the

following command can be issued at a console or through application software.

echo 1 > /sys/class/tty/ttyS3/device/rxfifothreshold

The rxfifothreshold can be set to any value between 1 and 256, however due to hardware limitations

only 4 effective value ranges are applied. These are as follows:

• Value range 1 – 31: interrupt is raised when 1 character is in RX FIFO

• Value range 32 –95: interrupt is raised when 64 characters are in RX FIFO (¼ of the FIFO

buffer size)

• Value range 96-191: interrupt is raised when 128 characters are in RX FIFO (1/2 of the FIFO

buffer size)

• Value range 192-256: interrupt is raised when the RX FIFO is full.

Note: When setting the FIFO threshold, it must be done before the application software opens the

UART device file.

6.4 BCT TM3 GPIO

The recommended way to access the GPIO is using the SYSFS interface. This can be done using the
command line (or scripts), or can be done from inside an application.

The Linux GPIO documentation can be found here:
https://www.kernel.org/doc/Documentation/gpio/sysfs.txt

This following page also has some useful examples:
http://falsinsoft.blogspot.co.uk/2012/11/access-gpio-from-linux-user-space.html

23

By default, the GPIOs on TM3 host boards are setup with pull-ups enabled. They are defined in the
w50gpio_a_on and w50gpio_b_on structures of the tm3-hb5.dts file
(/embedded/projects/tm3/lichee/linux-4.9/arch/arm64/boot/dts/sunxi/tm3-hb5.dts)

The logical GPIOs on the P15 header of HB5 map to the physical GPIO pins on the SOC as follows:

Logical GPIO on
50w connector

HB8 and HB9 Physical GPIO

GPIO 1 356

GPIO 2 357

GPIO 3 358

GPIO 4 359

GPIO 5 200

GPIO 6 201

GPIO 7 204

GPIO 8 205

GPIO 9 206

GPIO 10 166

GPIO 11 362

GPIO 12 227

To setup and control GPIO5 as Output with value 1 the following commands would be used:
sudo su
echo 200 > /sys/class/gpio/export
echo out > /sys/class/gpio/gpio200/direction
echo 1 > /sys/class/gpio/gpio200/value

6.5 TM3 Wi-Fi Operation

TM3 modules are produced with and without a WiFi chip.

6.5.1 TM3 Modules without WiFi

 TM3 modules without a WiFi capability can use external USB WiFi dongles connected to USB slot on
HB8. Please note that the kernel may need to be reconfigured to include specific driver for the WiFi
chip used on the USB dongle. See section 3.2 for more information how to change kernel
configuration.

24

6.5.2 TM3 Modules with WiFi

TM3 modules with a WiFi chip use 'ssv6x5x' WiFi driver which is by default built as a Linux kernel
module when building the Buildroot QT5 OS image. The Linux kernel module may or may not be
loaded during start of the OS depending on the choice of device manager being used. Buildroot QT5
OS and Ubuntu 22.04 OS load the WiFi module automatically.

To check the WiFi Linux kernel module is loaded issue the following command:
lsmod | grep ssv6x5x

If the module is not loaded by the device manager, then it can be loaded by issuing the following
command (presuming the driver was compiled as a module and its module file exists in the root file
system):
sudo modprobe ssv6x5x

The driver requires a configuration file located at the following location on the root file system:
/lib/firmware/ssv6x5x-wifi.cfg

The configuration file is provided for your reference at the following location (the two lines bellow
are part of the same file path):
/embedded/projects/tm3/buildroot/buildroot-

2022.02/board/bct/tm3/rfs_overlay/usr/lib/firmware/ssv6x5x-wifi.cfg

If the module was successfully loaded the wlan0 network device should be present. This can be
checked by issuing the following command.

ifconfig –a

The following commands can be used to enable the wlan0 interface, and scan for networks.

ifconfig wlan0 up

iw wlan0 scan | grep SSID

6.6 TM3 Audio
The audio CODEC featured on TM3 implements the standard Linux ALSA API framework. Standard

commands like alsamixer, aplay, arecord, speaker-test will work.

The audio signals on the host board 50w connector can be controlled via ALSA Card 1 (SUNXI-AUDIO

acx00-dai-0). Pins for headphone output are marked as LINEOUT_L and LINEOUT_R on the 50w

connector. There is a Class D amplifier on the host boards which outputs mono audio signal to

SPKR_P and SPKR_N pins when it is turned on. The CLASS D amplifier is by default turned off. To turn

the CLASS D amplifier on, set the GPIO 385 as output and value 1. Line-in stereo audio input is

present on LINEIN_L and LINEIN_R pins on the 50w connector.

The following example configures the audio mixer for output and plays a sound.

amixer -c 1 sset 'LINEOUT' 100%

amixer -c 1 sset 'Left DAC Mixer I2SDACL' on

amixer -c 1 sset 'Left Output Mixer DACL' on

25

amixer -c 1 sset 'Right DAC Mixer I2SDACR' on

amixer -c 1 sset 'Right Output Mixer DACR' on

aplay -D hw:1,0 /usr/share/sounds/alsa/Front_Left.wav

The HDMI audio signals on HB8 can be controlled via ALSA Card 0 (SUNXI-HDMIAUDIO audiohdmi-

dai-0).

6.7 HB8 uSD Card

The uSD card connector featured on host boardsis mapped to /dev/mmcblk0 device in the Linux
kernel.

6.8 TM3 Watchdog

The SOC on the TM3 module includes a hardware watchdog that can reset the system. It is

implemented using the standard Linux Watchdog API.

https://www.kernel.org/doc/Documentation/watchdog/watchdog-api.txt

Please note that the maximum time between watchdog updates can be set up-to 16 seconds on

TM3 module due to the hardware limitations.

6.9 TM3 Power management

TM3 implements power and thermal management under software control. This can be configured

using the DVFS framework in the Linux kernel.

https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt

TM3 supports suspend to RAM, which allows the system to enter a low power mode while retaining

the contents of RAM. This allows the system to resume to an operational state in a very short period

of time. To enter suspend to RAM mode the following command can be issued.

sudo su
echo mem > /sys/power/state

The SLEEP_RQ# signal on host board 50w connector is configured to wake the system up when in

suspend to RAM mode.

Please see Appendix A for an issue related to suspend to RAM feature.

6.10 TM3 Class-D amplifier

The class D amplifier implemented on host boards can be controlled using physical GPIO 385.

6.11 LCD Backlight

The LCD backlight can be controlled using the standard Linux sysfs backlight class.

https://www.kernel.org/doc/Documentation/ABI/stable/sysfs-class-backlight

The following commands would set the backlight to 0%:

https://www.kernel.org/doc/Documentation/watchdog/watchdog-api.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/ABI/stable/sysfs-class-backlight

26

sudo su
echo 0 > /sys/class/backlight/pwm-backlight/brightness

The following commands would set the backlight to 50%:

echo 50 > /sys/class/backlight/pwm-backlight/brightness

The following commands would set the backlight to 100%:

echo 100 > /sys/class/backlight/pwm-backlight/brightness

6.12 HB8 RTC
The HB5 host board has a Real Time Clock IC and a battery connector to keep the current time while

the board is powered off.

To check the RTC is present in Linux issue the following command:

cat /sys/class/rtc/rtc0/name

rtc-pcf8523 should be displayed.

For proper RTC operation the RTC battery must be present. It is either soldered directly on the HB8

board or must be connected to the battery connector.

To read current time stored in RTC issue the following command:

hwclock -r -f /dev/rtc0

To set current time to RTC issue the following commands:
date -s "2022-03-31 15:37"

hwclock -w -f /dev/rtc0

Note: if the RTC battery is unplugged from the connector then the current date and time kept by the
RTC chip is lost. In such case, you’ll need to set the current time to RTC again - as described above.

6.13 HB8 and HB9 vs. Lite versions
The HB8 and HB9 Lite versions do not have certain connectors populated. Specifically, it is HDMI,

USB3 and M.2 connectors. Lite versions of the host boards use the same Linux kernel device tree

configurations as non-lite host boards, but the missing connectors prohibit use of those peripherals.

6.13.1 HB8 USB3
Linux kernel enables the USB3 bus during boot. Its presence can be verified by the following

command:

lsusb –t

The following device should be displayed in the list:

Bus 04.Port 1: Dev 1, Class=root_hub, Driver=xhci-hcd/1p, 5000M

27

No further configuration is required. Devices plugged-in to the USB3 socket should work as

expected.

6.13.2 HB8 HDMI out
HDMI screen is by default mapped to the second Linux framebuffer /dev/fb1. The primary screen

mapped to /dev/fb0 device is the LCD panel. Xorg (X window system display server) can be

configured to display desktop on the HDMI screen by adding the following configuration to the

/etc/X11/xorg.conf.d/50-displays.conf file. Create the file if it does not exist and then reboot the

board to apply the changes.

Section "Device"

 Identifier "FBDEV 1"

 Driver "fbdev"

 Option "fbdev" "/dev/fb1"

EndSection

Currently used HDMI screen resolution can be checked by the following command:

cat /sys/class/graphics/fb1/modes

The capabilities of the connected HDMI screen can be checked by the following command:

edid-decode < /sys/devices/virtual/hdmi/hdmi/attr/edid

Check the ‘Established timings supported’ information in the list for supported resolutions of the

connected HDMI screen.

By default the Full HD screen resolution (1920x1080@60Hz) is configured. The screen resolution can

be changed in /embedded/projects/tm3/lichee/linux-4.9/arch/arm64/boot/dts/sunxi/ tm3-

tmxdevboard.dts device tree file (or tm3-hb8.dts for HB8 host board). Change the value of the

“screen1_output_mode” to set the new HDMI screen resolution as per the following table:

Resolution screen1_output_mode value

720x480@60 2

720x576@50 3

1280x720@50 4

1280x720@60 5

1920x1080@50 9

1920x1080@60 0xa

3840x2160@30 0x1c

3840x2160@60 0x22

The definition of the video modes can be found in /embedded/projects/tm3/lichee/linux-

4.9/include/video/sunxi_display2.h file. Search for ‘enum disp_tv_mode’ to get the full video mode

list supported by the HB8 boards.

28

7. UBOOT operation
The u-boot version ported to the TM3 platform is V2014.07. At a high level its primary purpose is to
copy the Linux kernel, device tree configuration, and bootargs into memory before passing
execution over to the Linux kernel.

7.1 Configuring uboot
Configuration of uboot is performed by issuing commands over the debug serial console available on
P2 of HB5. The UART is configured to communicate with 115200,8,n,1 parameters. Connecting a null
modem cable between the HB5 and a development PC makes it possible to configure uboot using a
terminal emulator. E.g. Putty or HyperTerminal.

To enter configuration mode, uboot must receive a character over the serial port during power on.
The bootdelay parameter is set to 1 by default to give a fast boot time, which means that the time
window pressing the key is short.

The four most common commands used in uboot for TM3 are.

1. setenv – used to set an environment variable to a value.
2. printenv – used to display the current value of an environment variable.
3. editenv – used to edit an environment variable.
4. saveenv – save the environment

The remainder of this section will focus on the TM3 specific environment variables and how they
should be edited. Other commands are available, which can be viewed by issuing the command
“help”. The official uboot website is also a good source of information on uboot.

http://www.denx.de/wiki/U-Boot/

7.2 Uboot environment variables
The following table defines the Uboot variable related to the TM3 platform.

Variable Description

bootdelay The time window in seconds that Uboot will wait for a key press to enter

configuration mode. Default value is 1

mmcargs The bootargs passed to the Linux kernel when booting from uSD or eMMC storage.

netargs The bootargs passed to the Linux kernel when booting from NFS storage.

mmc_root The uSD/emmc partition to mount as the root filesystem.

fdt_file The device tree blob file to load

serverip The IP address of tftpserver, and NFS server. Used when booting over a network.

nfsroot The nfs root directory to mount on the host PC when booting over NFS.

http://www.denx.de/wiki/U-Boot/

29

7.3 Uboot configuration examples

7.3.1 Changing the Uboot boot delay
setenv bootdelay 3

saveenv

7.3.2 Booting the Linux kernel over tftp and mounting a rootfs

over NFS

setenv serverip <IP address of development machine>

setenv nfsroot /nfs/rootfs

setenv bootcmd run netboot

saveenv

7.3.3 Boot a root filesystem from the HB8 uSD
set mmc_root /dev/mmcblk0p2 rootwait rw

saveenv

8. QT5 Application development introduction

The following section describes how QT creator can be installed and configured to deploy a simple
“Hello World” app to the TM3 platform over a network connection. QT Creator can be used to
develop QT5 and QT6 applications.

8.1.1 Install QT Creator to the development machine

On the same development machine that was used build the QT5 Buildroot root file system issue the
following command to install QT creator.

sudo apt install qtcreator

The recommended Linux OS (Ubuntu 22.04) installs QT Creator version 6.0.2 and is based on QT
5.15.3.

8.2.1 Setup the TM3 QT5 environment in QT Creator

QT Creator uses the notion of “Kits” which refer to development environment configurations,

targeting specific architectures and devices. By default, only a single kit is installed in QT creator that

targets applications running in the host environment. This section will focus on the setup of a kit

targeting TM3 running the Buildroot generated QT5 root file system created in section 4.2.

1. Ensure section 4.2.2 has been followed to create a QT5 based root file system for TM3.

30

2. Prepare an installation uSD card for TM3 as described in section 5.2 and install the QT5
demo image to TM3’s internal storage.

3. Boot the TM3 unit with an Ethernet cable attached. The LCD will display the IP address
obtained via DHCP. Make a note of this IP Address.

4. Launch QT creator

5. Navigate to Tools -> Options

6. In the left hand pane select “Devices” and then select the Devices tab.

7. Click “Add...” button, select “Generic Linux Device” and click “Start Wizard”.

8. Set the device name to “TM3”

9. Set the host name or IP address to the IP address noted down in step 3.

10. Set the username to “root”

11. Click Next to display the Key Deployment page.

12. Click Create New Key Pair button and confirm the default values (RSA, 1024 bit) by clicking
Generate And Save Key Pair button.

13. On Key Deployment page click Deploy Public Key button. When password is requested enter

‘password’ without quotes. A confirmation pop-up ‘Deployment finished successfully’ should
be displayed. Close it.

14. Click Next then click Finish. Verify that the Device test was successful, and then click Close.

31

15. Press Apply in the Options Window.

16. In the left hand pane select “Kits”, and then select the “Compilers” tab.

17. Add C Compiler. Click “Add” -> “GCC” → “C”.

18. Set Name to “TM3 Buildroot C”.
19. Set Compiler path to

"/embedded/projects/tm3/buildroot/output_qt5/host/usr/bin/aarch64-buildroot-linux-gnu-
gcc”

20. Ensure ABI is set to “arm-linux-generic-elf-64bit”

21. Click Apply

22. Add C++ compiler. Click “Add” → “GCC” → “C++”

23. Set Name to “TM3 Buildroot C++”

24. Set Compiler path to
“/embedded/projects/tm3/buildroot/output_qt5/host/usr/bin/aarch64-buildroot-linux-gnu-
g++”

25. Ensure ABI is set to “arm-linux-generic-elf-64bit”

32

26. Click Apply

27. In the left hand pane select, “Kits” and then select the “Debuggers” tab. Click “add” button.

28. Set the name to, “TM3 Buildroot GDB”

29. Set the path to, "/embedded/projects/tm3/buildroot/output_qt5/host/usr/bin/aarch64-
buildroot-linux-gnu-gdb”

30. Click Apply

31. In the left hand pane select, “Kits” and then select the “QT Versions” tab. Click “Add...”
button.

32. Select the qmake executable,
“/embedded/projects/tm3/buildroot/output_qt5/host/usr/bin/qmake”

33. Set the Version name to “TM3: Qt %{Qt:Version} (System)”

34. Click Apply

35. In the left hand pane select, “Kits” and then select the “Kits” tab. Click “Add”.

36. Set Name to “TM3”

37. Set File system name to “TM3”

38. Select Device Type to “Generic Linux Device”

39. Select Device to “TM3 (default for Generic Linux)”

40. Set Sysroot to “/embedded/projects/tm3/buildroot/output_qt5/target”

41. Set Compilers to “TM3 Buildroot C” and “TM3 Buildroot C++”

42. Set debugger to “TM3 Buildroot GDB”

43. Set Qt Version to “TM3: Qt 5.15.8 (System)”

33

44. Press Apply button and then OK button.

8.2.2 Setup a simple QT5 “Hello World” application

The following section will describe how to setup and deploy a simple “Hello world” application to

TM3.

1. Launch QT Creator

2. Select “New Project”

3. Select, “Qt Widgets Application” and click, “Choose”.

4. Set the name to “TM3_hello_world”

5. Set the project directory (Create in) to /home/developer/qt5 and click Next button

6. Set the Build system to ‘qmake’ and click Next button.

34

7. Leave the default options intact on the Class Information page and click Next button.

8. On the Translation page click Next button (no translation file required).

9. On the Kits Selection page select the “TM3” kit, and click Next button.

10. On the Summary page click Finish button.

11. In the Projects view, double click “mainwindow.ui” to open the forms designer.

12. Scroll down to Display Widgets, and drag a label widget onto the form.

13. Use the property editor to change the label text to, “Hello World”

35

14. Select Build -> Build All (ctrl + shift +B), and click, “Save All” when prompted.

15. Monitor the “4 Compile Output” window for build completion without errors

16. Select Build → Run (Ctrl + R) to deploy and run the application on the TM3 hardware.

8.3.1 Setup the TM3 QT6 environment in QT Creator

QT Creator uses the notion of “Kits” which refer to development environment configurations,

targeting specific architectures and devices. By default, only a single kit is installed in QT creator that

targets applications running in the host environment. This section will focus on the setup of a kit

targeting TM3 running the Buildroot generated QT6 root file system created in section 4.3.

1. Ensure section 4.3 has been followed to create a QT6 based root file system for TM3.

2. Prepare an installation uSD card for TM3 as described in section 5.2 and install the QT6
demo image to TM3’s internal storage.

3. Boot the TM3 unit with an Ethernet cable attached. The LCD will display the IP address
obtained via DHCP. Make a note of this IP Address.

4. Launch QT creator on your development PC

5. Navigate to Tools -> Options

6. In the left-hand pane select “Devices” and then select the Devices tab.

7. Click “Add...” button, select “Generic Linux Device” and click “Start Wizard”.
Set the device name to “TM3QT6”

8. Set the host name or IP address to the IP address noted down in step 3.

9. Set the username to “root”

10. Click Next to display the Key Deployment page.

11. Click Create New Key Pair button and confirm the default values (RSA, 1024 bit) by clicking
Generate And Save Key Pair button.

36

12. On Key Deployment page click Deploy Public Key button. When password is requested enter

‘password’ without quotes. A confirmation pop-up ‘Deployment finished successfully’ should
be displayed. Close it.

13. Click Next then click Finish. Verify that the Device test was successful, and then click Close.

14. Press Apply in the Options Window.

15. In the left hand pane select “Kits”, and then select the “Compilers” tab.

16. Add C Compiler. Click “Add” -> “GCC” → “C”.

17. Set Name to “TM3-QT6 Buildroot C”.
18. Set Compiler path to

"/embedded/projects/tm3/buildroot/output_qt6/host/usr/bin/aarch64-buildroot-linux-gnu-

37

gcc”

19. Ensure ABI is set to “arm-linux-generic-elf-64bit”

20. Click Apply

21. Add C++ compiler. Click “Add” → “GCC” → “C++”

22. Set Name to “TM3-QT6 Buildroot C++”

23. Set Compiler path to
“/embedded/projects/tm3/buildroot/output_qt6/host/usr/bin/aarch64-buildroot-linux-gnu-
g++”

24. Ensure ABI is set to “arm-linux-generic-elf-64bit”

25. Click Apply

26. In the left-hand pane select, “Kits” and then select the “Debuggers” tab. Click “add” button.

27. Set the name to, “TM3-QT6 Buildroot GDB”

28. Set the path to, "/embedded/projects/tm3/buildroot/output_qt6/host/usr/bin/aarch64-
buildroot-linux-gnu-gdb”

29. Click Apply

30. In the left-hand pane select, “Kits” and then select the “QT Versions” tab. Click “Add...”
button.

31. Select the qmake executable,
“/embedded/projects/tm3/buildroot/output_qt6/host/usr/bin/qmake”

32. Set the Version name to “TM3-QT6: Qt %{Qt:Version} (System)”

33. Click Apply

34. In the left-hand pane select, “Kits” and then select the “Kits” tab. Click “Add”.

38

35. Set Name to “TM3-QT6”

36. Set File system name to “TM3-QT6”

37. Select Device Type to “Generic Linux Device”
Select Device to “TM3QT6 (default for Generic Linux)”

38. Set Sysroot to “/embedded/projects/tm3/buildroot/output_qt6/host/aarch64-buildroot-
linux-gnu/sysroot”

39. Set Compilers to “TM3-QT6 Buildroot C” and “TM3-QT6 Buildroot C++”
40. Change Environment and add a new variable (the text bellow is a single line):

QT6_CROSS_COMPILE=/embedded/projects/tm3/buildroot/output_qt6/host/bin/aarch64-
buildroot-linux-gnu-

41. Set debugger to “TM3-QT6 Buildroot GDB”

42. Set Qt Version to “TM3-QT6: Qt 6.7.3 (System)”

43. Press Apply button and then OK button.

8.3.2 Setup a simple QT6 “Hello World” application

The following section will describe how to setup and deploy a simple “Hello world” application to

TM3.

• Launch QT Creator

• Select “New Project”

• Select, “Qt Widgets Application” and click, “Choose”.

39

• Set the name to “TM3-QT6_hello_world”

• Set the project directory (Create in) to /home/developer/qt6 and click Next button

• Set the Build system to ‘qmake’ and click Next button.

• Leave the default options intact on the Class Information page and click Next button.

• On the Translation page click Next button (no translation file required).

• On the Kits Selection page select the “TM3-QT6” kit and click Next button.

40

• On the Summary page click Finish button.

• In the Projects view, double click “mainwindow.ui” to open the forms designer.

• Scroll down to Display Widgets, and drag a label widget onto the form.

• Use the property editor to change the label text to, “Hello World”

• Select Build -> Build All (ctrl + shift +B), and click, “Save All” when prompted.

• Monitor the “4 Compile Output” window for build completion without errors

41

• Select Build → Run (Ctrl + R) to deploy and run the application on the TM3 hardware.

8.3.3 Setup a simple QT6 QML “Hello World” application
The following section will describe how to setup and deploy a simple “Hello world” application

written in QML to TM3.

1. Launch QT Creator

2. Select “New Project”

3. Select, “Qt Quick Application” and click, “Choose”.

4. Set the name to “TM3-QT6_qml_hello_world”

Set the project directory (Create in) to /home/developer/qt6 and click Next button

5. Set the Build system to ‘qmake’ and click Next button.

6. Set the Minimal required Qt version to Qt 5.15

7. On the Translation page click Next button (no translation file required).

8. On the Kits Selection page select the “TM3-QT6” kit and click Next button.

42

9. On the Summary page click Finish button.

10. In the Projects view, double click “TM3-QT6_qml_hello_world.pro” file to open it in the

editor.

11.
12. Edit the QML_IMPORT_PATH and set it to (the text bellow is a single line):

/embedded/projects/tm3/buildroot/output_qt6/host/aarch64-buildroot-linux-

gnu/sysroot/usr/lib/qt6/qml

13. In the Projects view, double click on ‘main.qml’ file to open it in the text editor.

14. Edit the screen resolution variable Window.width and Window.height to match the screen

resolution of your TM3 device (7” screen: 800x480, 9.7” screen :1024x768, 12” screen

1280x800)

15. Edit the rest of the ‘main.qml’ file and add the Hello World text into the Window element as

follows:

 Text {

 id: helloText

 text: "Hello world from QML!"

 y: 30

 anchors.horizontalCenter: parent.horizontalCenter

43

 font.pointSize: 24; font.bold: true;

 color: "blue"

 }

16. Select Build -> Build All (ctrl + shift +B), and click, “Save All” when prompted.

17. Monitor the “4 Compile Output” window for build completion without errors

18. Select Build → Run (Ctrl + R) to deploy and run the application on the TM3 hardware.

8.3.4 Setup an interactive QT6 QML application
The following section describes how to setup and deploy a simple interactive application written in

QML to TM3. This example was adapted from Qt Design Studio sample application.

1. Follow the steps in Section 8.3.3 till point 16 (including), to create a minimal QML application

in Qt Designer. Set the name of the project as TM3-QT6_qml_button. Ensure the

QML_IMPORT_PATH is set or else the text editor might show errors highlighted in red.

2. Add new element Screen01 as a child of the Window:

 Screen01 {

 id: mainScreen

 width: parent.width

 height: parent.height

 color: baseColor

44

 }

3. Create a new Screen01.qml file by right-clicking at qml.qrc item and selecting “Add New...”

from the context menu.

4. On a ‘Choose a template’ dialogue select ‘Qt / QML File (Qt Quick 2)’ and then click

‘Choose...’ button.

5. On the Location screen set the ‘File name’ as Screen01, then click ‘Next >’ button.

45

6. On the project Management screen click ‘Finish’ button.

7. Double click the Screen01.qml to open it in the editor.

8. Replace the contents of the Screen01.xml with the following contents:

/*

This is a UI file (.ui.qml) that is intended to be edited in Qt Design Studio only.

It is supposed to be strictly declarative and only uses a subset of QML. If you edit

this file manually, you might introduce QML code that is not supported by Qt Design Studio.

Check out https://doc.qt.io/qtcreator/creator-quick-ui-forms.html for details on .ui.qml

files.

*/

import QtQuick

import QtQuick.Controls

Rectangle {

 id: rectangle

 property color baseColor: "gray"

 property color highlightColor: "#2294c6"

 Button {

 id: button

 text: qsTr("Press me")

 anchors.verticalCenter: parent.verticalCenter

 checkable: true

 anchors.horizontalCenter: parent.horizontalCenter

 Connections {

 target: button

 onClicked: animation.start()

 }

 }

 Text {

 id: label

 text: qsTr("Hello TM3-QT6_qml_button")

 anchors.top: button.bottom

 //font.family: "Arial"

 anchors.topMargin: 45

 anchors.horizontalCenter: parent.horizontalCenter

 SequentialAnimation {

 id: animation

46

 ColorAnimation {

 id: colorAnimation1

 target: rectangle

 property: "color"

 to: highlightColor

 from: baseColor

 }

 ColorAnimation {

 id: colorAnimation2

 target: rectangle

 property: "color"

 to: baseColor

 from: highlightColor

 }

 }

 }

 states: [

 State {

 name: "clicked"

 when: button.checked

 PropertyChanges {

 target: label

 text: qsTr("Button Checked")

 }

 }

]

}

9. Press Ctrl+B to build the project, then press Ctrl+R to deploy and run the application on TM3.

The QML application should display a button in the middle of the screen with a grey

background colour. By tapping the ‘Press me’ button the background colour changes to blue

and back to grey via animated transition.

8.4.1 How to deploy SSH key to a new TM3 device in QT Creator
The following section describes how to deploy an existing SSH key to a new TM3 device for the

purpose of developing applications in Qt Creator. If you use QT Creator on the TM3 development

virtual machine provided by Blue Chip Technology, then the TM3QT6 Device (as defined in QT

47

Creator) is already configured with certain IP address and expects that the target TM3 device

(physical unit) has the same IP address and the SSH key installed. When you try to run existing

examples from QT Creator the connection to a new TM3 unit may fail. Follow the next steps to

redeploy the SSH key to your current TM3 device and to fix the connection issue.

1. Ensure the TM3 device is connected to LAN and displays its IP address on the screen. Ensure

the LAN network is the same as your development PC network by pinging to the TM3 device

IP address from your PC.

2. Enter Tool -> Options... in QT Creator’s main menu, then click the ‘Devices’ item in the left

column.

3. Select the desired Device (TM3QT6) in the top Combo box:

4. In the ‘Type specific’ section of the dialogue, select the ‘Default’ Authentication type and fill

in the ‘Host name’ IP address that corresponds to the TM3 device IP address.

5. Click ‘Deploy Public Key’ button, then select the qtc6_id.pub key (or use a different SSH key

you generated). When prompted for password type in ‘password’ (no quotes). The

deployment should finish successfully. If not, clean the previous ssh key associated with the

IP address on your development PC (or virtual machine) via the following command issued in

the terminal:
ssh-keygen -f "/home/developer/.ssh/known_hosts" -R "192.168.1.100"

Ensure the IP address matches the TM3’s IP address when using the command above.

48

Then redeploy the key by repeating step 5.

6. Once the key is (re)deployed, switch the Authentication type to Specific key.

7. Test the connection by clicking the ‘Test’ button on the same dialogue. The test should finish

successfully. Now you can deploy and run applications remotely from QT Creator.

Appendix A - Known Problems

1) The suspend to RAM feature causes intermittent issues with the power management chip

firmware in the SoC. The issue is identified by the following message in the kernel system log:

[SCP Error] :hard syn message error

There is no known solution to fix the issue.

2) Ubuntu 22.04 OS reboot may occasionally take extra time due to a lock in xscreensaver

application. This happens only when the board reboot is issued in less than 50 seconds after the

desktop appears on the screen. The issue may be fixed in future Ubuntu package upgrades.

Solution: uninstall xscreensaver by running the following command:

sudo apt purge xscreensaver

3) If using BLE features, then suspend the system and resume, Wifi/BLE module no longer functions

correctly.

There is no known solution to fix the issue.

49

Appendix B - Change Log

Issue Date Author Changes

1.0 08/06/2022 M. Olejnik Initial draft, based on BCT TM1 Linux document

1.1.0 17/03/2023 M. Olejnik Section 1, added information about host boards

Section 3, reworded Ubuntu Core to Ubuntu OS (not to

be confused with Ubuntu's IOT product)

Section 3.2, updated the dtb table

Section 4, 5 and 6, replaced references of HB5 to more

generic 'host board'

Section 6.3: fixed serial port names

Section 6.6: Updated pinout, CLASS D amp and HDMI

audio

Section 7.2 and 7.3.3: Fixed mmc_root name

1.1.1 24/03/2023 M. Olejnik Section 5.1, improved clarity, removed reference to

img2simg tool as it is not compatible.

1.1.2 12/06/2023 M. Olejnik Section 3.2, added .dtb file for 12” HB8 board.

1.1.3 26/06/2023 M. Olejnik Added section 3.3 Using customised Linux kernel device

tree.

Added note to section 6.8 TM3 Watchdog

50

1.2.0 11/10/2023 M. Olejnik Removed HB5, HB6 and Tmxdevboard references from

the whole document. These boards were superseded by

HB8 and HB9 boards.

Added Wifi information (Sections 6.5.1 and 6.5.2).

Removed CB3 information (CAN, Accelerometer) as this

option it is not compatible with HB8 and HB9 boards

Fixed section 6.13.2 Hdmi - Xorg configuration path to

reflect location on Ubuntu 22.04 root fs.

U-boot bootdelay information changed to 1

Updated Appendix A: known problems (removed Ubuntu

18.04 issue, added Suspend to RAM issue, added

xscreensaver issue).

Updated version of the TM3 bsp linux archive to v110

(now includes Ubuntu 22.04 root fs).

RTC battery: added note about disconnected battery.

1.3.0 02/09/2024 C. Richardson Added section 1.1 for information on TM3A and TM3B.

Added information on extra pack parameter (Section 5.1).

Updated Appendix A: known problems (added BLE issue).

1.3.1 10/09/2024 C. Richardson Added section 4.3 on QT6

1.4.0 08/11/2024 M. Olejnik Added section 4.5 about QT Demo applications

Added sections related to building QT6 applications.

Added sections related to building QML applications.

Added section 8.4.1 about redeployment of SSH key in QT

Creator.

