g Blue Chip
w7/ Technology

Linux

For

BCT TM1 / HBS

User Guide

Document Reference: BCTTM1HB5 Linux User Guide
Document Issue: 1.8.1
Associated SDK release: 2.03

Associated TM1 Update Utility release: 1.27

Contents

Lo INTPOTUCTION ettt sttt sttt et e st sate st e e b e e b e e sreesaeesanes 4
B =X o\ VAT g0 o 0 =T 0 Y =] U o 4
2.1 Embedded LiINUX COMPONENTSuuiiiieeeeiciiiiiiiieee e e e eciite e e ee e e e esbaeeseeeeeesnnresseeeeeesssnnnsesaseeasenanns 4
2.2 Installation of the Embedded Linux build components...........cccuviiiieeiii e 4
2.3 Development Maching SELUPcivciiie ittt et e e e e s e s be e e e s aae e e seasbaeeeensees 8
3. Building required components for UbUNtU COreccuuiiiiiiiiiciiiee e esaae e 10
3.1 Installing the Ubuntu Core root filesyStemM......c.ueiiiiiiiie i 10
3.2 Compiling the LINUX KEIMNEIceeei ittt e e e et e e e e e e e et re e e e e e s e e eannraeeeeeeeas 11
3.2.1 Compiling the Linux Kernel 4.9 with modularised WiFi drivers........cccccceecoiiiiiieiiiciccciieeeee, 12
3.3 U-Boot Bootloader — Ported (http://www.denx.de/wiki/U-BOOt)cccevveeeeeeiieeeceeeeereerens 13
3.4 WILINKS Wi-FI/BT SUPPOI ...veeviereeeteeetecreereereesreeeteesaesaveeaseeseesseesseesssessseesseesseesseesseessssssnsessees 13
3.5 Ubuntu Core system COmMpPONENts SUMMATYceeeiiuireeeiiiereeeeiirreeeeisreeesisssesesssseesessseessssssseesans 13
3.6 Kernel 4.9 Persistant 1080 D0O0t.......ccciiiiiiiiiee et et 14
4.0 Building embedded Linux With BUildroot.............uuiiiiieii ittt 16
4.1.1 BUildroot iNtrodUCTIONooiiiiiii ettt s s s snee e sre e e saee s 16
0 A = T Lo o Yo Y = A =T o To 1Y o VPP 16
4.2.1 Quickboot demo, with MPIayer SUPPOITccccviiieiiiie et e e e e e aeee s 16
4.2.2 QT5, ANA BIUBZ 5ottt eett e e e ee et e e e e es e e abbaaaeeeesesessbraaeeeeeeeennrsrees 17
4.3.1 Adding WiFi/BT components to the Buildroot staging area...........ccoeeeeeeeeeeeeeeeeecreeeeveeeveeens 17
4.3.2 Building Buildroot with modularised WiFi/BT driVErsccovieeveeiieeeeieeeieeeeee e eevee e 18
S TN 1 (o [oTo] Ao 1U 11 3SR UPRUNS 18
5. Updating the firmware / Software 0N TML.......ccoooiiiiiieiiienieeciee et ettt eteeeete e veesbreteeeareennas 19
5.1 TMx update Utility OPerationceiiiiieii et e et e e earaae s s e taeeeeans 19
5.2 TMx update utility firmware l0CatioNS..........coiciiiiiciie e 20
6. BCT TM1/HBS5 Hardware SEtUP iN LINUXeeeoveeeeueeeereeeeteeeereeereeeereesteeeeseeeeteeeeseeeeseeeenseeesneesnseeens 21
(o B L] oTUT =Y T o =1 o o Yo LSRR 21
6.2 BCT TIMIL/HBS SEITAl POITS...eeeeeeeieeeeeeeeeee et ettt e e e e e ettt e e e e s ae e et e teseseaaasseeteeeeeessasasseaneeeeeeas 22
6.2.1 RS-485 Manual Transmit CONTrOl.......ccuiriiiiiiieeiieee ettt st 22
6.2.2 RS-485 Automatic Transmit CONTIOlccueiveieiiiiiierieeneenee ettt 22
6.2.3 UART DMA and FIFO ThreSholdccuiiiiiiiiieieeenee ettt 22
6.3 BCT HBS GPIO....ceiiiiiiieee ettt ettt ettt et e e e sttt e e e e s ettt te e e e es e anbebeeeeeeesaaannrenaaeeeaan 24

SR Y WYV S 0] o1=T =) {01 o [T 25

SR Y = N I X 0N O] o 1= -] 4 (o] o F T 25
6.6 TIMIL AUGIO . .veeeeeeieeiieeiiee ettt ettt st et e s e e st e e st e e s bt e e saeeesabeeesbeeesmseeenseeennreasnreeanreesane 25
6.7 HB5 USD Cardeeiiiiieiiieiiieeitee sttt sttt et e s e st e st e st e e sbeeesabeeesbeeesuseeeaseeesnseesnreesanreesnne 25
Lo I\ YA ol o T o =SSR 25
(ol I Y o AV Tl 0 F= T F= T oL=] 1 =T 0 | 26
6.10 HB5 Class-D amiplifier.....c.uuiieieiiie ettt ettt et e e e e rare e e e aae e e eas e e e e s nteeeesanaaaeens 26
5.11 CB3 CAN BUS..cuteeitiiiiteiie ettt et st e st sa bttt et e st e s aeesat e sae e eab e e sae e s aeesseessseameeemeeeeeebeenneesneeenneen 26
Lo A - T 47 ={ o} R 26
U110 @] o= =1 oo o 28
8 R 0o Yo i T=qU T g TaY =N o To o] AR 28
7.2 Uboot environment Variableso.eoiioiiiiiieeeeee et 28
7.3 Uboot configuration @XamPlesc.eeeeiciiiiiiciie ettt e e snraae s e eraeeeeans 29
7.3.1 Changing the Uboot DOOt delaYuuuiiiiiiieeiiiieeeee et e e e e e e e 29
7.3.2 Booting the Linux kernel over tftp and mounting a rootfs over NFS..........cccovvvveeieiecccinieenn.nn. 29
7.3.3 Enable capacitive multitouch in the Linux kernel...........ooeeeiiociiiei e, 29
7.3.4 Boot a root filesystem from the HB5 USDccoiiiiiiiiiiiee ettt svtee s e ere e 29
8. QTS5 Application development iNtrodUCTIONuiiiiiiiie e e 30
2B R O) 1T T OSSP VRRPRRPRTPPR 30
8.1.1 Download and install QT Creator to the development machine........ccccoeccivieeieiiiccciiiieeenn, 30
8.1.2 Setup the TM1 / HB5 environment in QT Creator.....c..cccveieeveeeveeeeeeeereeeereeeeeeeeereeeereeeeneeens 30
8.1.3 Setup a simple QT5 “Hello World” application.........cccccuiiiieeeeeicccieee e, 37
2 O) LT OSSP PP O PRRPSRPRPPR 43
8.2.1 Download and install QT Creator to the development machine........ccccoeevveveeiiniiiee e, 43
8.2.2 Setup the TM1 / HB5 environment in QT Creator........cccccueeveeiveeereeereeeeenresreeveenveesteesveenseens 44
8.2.3 Setup a simple QT5 “Hello World” application.........ccccuuiiiieeee i 49
Appendix A - KNOWN ProbIEMS.........oeeiiii ettt e e e e e e e e e e e e e e e e aaaae e e s 57
J AN o 01T o [e @ o =T T= TN o = SRR 58

1. Introduction

The content of this document provides information required to start building Linux operating systems
for the BCT TM1 / HB5 platform. It covers:

e The tools and components required for building a Linux operating system
e How to install the build components

e How to compile the U-Boot boot loaders stand alone

e How to compile the Linux Kernel 3.14 stand alone

e How to compile the Linux Kernel 4.9 stand alone

e How to setup a root filesystem using Ubuntu 14.04 LXDE

e How to setup a root filesystem using Ubuntu 18.04 LXDE

e How to build a root filesystem including QT5 using build root

e How to boot Linux on the TM1/HB5 platform

e How to setup and deploy a simple QT5 application to TM1/HB5

2. Environment Setup

2.1 Embedded Linux Components

The components involved in a typical Embedded Linux system targeting the ARM architecture are:

1. Bootloader (Typically uboot)
2. Linux Kernel
3. Root filesystem.

U-boot 2014.04 was ported to provide the bootloader functionality for the TM1/HB5.
Linux kernel 3.14.28 and 4.9.88 have been ported to be compatible with the BCT TM1/HBS5 platform.

Pre-built Ubuntu root filesystems are provided for demonstration purposes. As an alternative to
Ubuntu, a Buildroot environment is provided to allow bespoke root filesystems to be generated for
the TM1/HB5 platform. Section 3 describes the procedure for building an image with the Ubuntu
filesystem; section 4 describes the procedure for building an image with Buildroot.

The TM1 software components above have all been tested to compile using an Ubuntu 18.04 LTS
development machine.

2.2 Installation of the Embedded Linux build components

Create the top level build BSP directory and grant it universal read/write/execute access as follows:

cd /
sudo mkdir embedded
sudo chmod 777 embedded

Copy the latest TM1/HBS5 Linux components to the “/embedded” directory. Sources can be
distributed in different ways, but usually they can be downloaded from our web site.
https://www.bluechiptechnology.com/product/tm1/

Download the Linux source code for TM1/HB5 using the command:

wget http://dl.bluechiptechnology.com/dl/tml/software/tmllinuxv203.tar.bz2
wget
http://dl.bluechiptechnology.com/dl/tml/software/tmllinuxv203.tar.bz2.md5

Check that the integrity of the download is ok by issuing the following command:

md5sum -c¢ tmllinuxv203.tar.bz2.md5
cd /

Extract the tar ball by issuing the command:

tar xvpjf tmllinuxv203.tar.bz2

Setup git to pull latest code from Bluechip Technology

Kernel 3.14 (GCC4.9):

cd /embedded/projects/tml/L3.14.28 1.0.1 ga/linux-tml/

git remote rm origin

git remote add origin
http://dl.bluechiptechnology.com/dl/tml/software/linux/L3.14.28 1.0.1 ga/li
nux-tml.git

git remote update

git branch --set-upstream-to=origin/master master

git pull

Kernel 4.9 (GCC7.3):

cd /embedded/projects/tml/L4.9.88 2.0.0/linux-tml/

git remote rm origin

git remote add origin
http://dl.bluechiptechnology.com/dl/tml/software/linux/1L4.9.88 2.0.0/linux-
tml.git

git remote update

git branch --set-upstream-to=origin/imx 4.9.88 2.0.0 ga imx 4.9.88 2.0.0 _ga

git pull

git show

Once extracted the build components will be laid out in the following structure on the development
machine. The BSP is capable of building images containing either kernel 3.14 or kernel 4.9. The first
directory (“embedded”) is the folder created in the root of the filesystem.

Directory

Directory

Description

/embedded/toolchains

gce-linaro-4.9-2014.11-
x86_64_arm-linux-gnueabihf

Prebuilt cross compiling tool chain based on GCC 4.9,
for building ARMhf software.

gce-linaro-7.3.1-2018.05-
x86_64_arm-linux-gnueabihf

Prebuilt cross compiling tool chain based on GCC 7.3,
for building ARMhf software.

/embedded/projects/tm1/ | u-boot-tm1 Source code for the U-boot boot loader including
configuration for BCT TM1/HB5
/embedded/projects/tm1/ | linux-tm1 3.14.28 kernel source code with configuration for
13.14.28 1.0.1_ga BCT TM1/HB5
rootfs Staging directory used for holding the Ubuntu root

filesystem of the target device during development

rootfsimages

Directory containing prebuilt root filesystems,
including:

Demo Ubuntu 14.04 image distributed with
TM1/HBS.

Quickboot demonstration image that will play videos
installed in the root of a USB flash drive. Built with
buildroot using
tm1_mplayerquickbootdemo_defconfig.

QTS5 demonstration image including sample
applications. Built with Buildroot using
tm1_qgt5sample_defconfig

buildroot-2016.02

Buildroot 2016.02 release with configurations for
building rootfs images, linux kernel, and linux device
tree blobs for TM1.

wilink8-build-utilites

Source code to the software that supports the Wi-Fi
and BT module implemented on TM1. Cloned and
configured from https://git.ti.com/wilink8-
wlan/build-utilites

/embedded/projects/tm1/
L4.9.88 2.0.0

linux-tm1 4.9.88 kernel source code with configuration for BCT
TM1/HB5
rootfs Staging directory used for holding the Ubuntu root

filesystem of the target device during development

rootfsimages

Directory containing prebuilt root filesystems,
including:

Demo Ubuntu 18.04 image distributed with
TM1/HBS.

Quickboot demonstration image that will play videos
installed in the root of a USB flash drive. Built with
buildroot using
tm1_mplayerquickbootdemo_defconfig.

QTS5 demonstration image including sample
applications. Built with Buildroot using

buildroot-2018.02.8

Buildroot 2018.02 release with configurations for
building rootfs images, linux kernel, and linux device
tree blobs for TM1.

2.3 Development Machine Setup

Where possible build scripts have been provided for the various components included with the Linux
SDK for BCT TM1/HBS5. These scripts presume the following has been setup on the Ubuntu 18.04 LTS
development machine.

e ATFTP server serving files from a tftpboot directory in the root of the filesystem. (/tftpboot)
e An NFS server serving files from /nfs.

The following links provide information on setting up an NFS and TFTP server.

http://www.debianhelp.co.uk/tftp.htm

Setup Required

sudo apt-get install tftpd
sudo mkdir /tdtpboot
sudo chmod 777 /tftpboot

http://www.debianhelp.co.uk/nfs.htm

Setup Required

sudo apt-get install nfs-kernel-server nfs-common portmap
cd /

sudo mkdir nfs

cd nfs

sudo mkdir rootfs

cd /

In the file /etc/exports , add the line

/nfs/rootfs *(rw,sync,no_root_squash)

The /nfs directory should be symbolically linked to the root staging directory (see table above). From
the /nfs directory issue the following command.

ln -s /embedded/projects/tml/L3.14.28 1.0.1 ga/rootfs 3.14.rootfs
ln -s /embedded/projects/tml/L4.9.88 2.0.0/rootfs 4.9.rootfs

The following packages are known to be required on an Ubuntu 14.04 development machine to
successfully build the components. It is recommended that these components are installed to later
versions of Ubuntu. v18.04 has also been trialled.

sudo
sudo
sudo

sudo
sudo

apt-get
apt-get
apt-get

apt-get
apt-get

install
install

install

install

install

build-essential
u-boot-tools
flex

lzop
ncurses-dev

Before compiling various stand alone Linux components we must set some environment variables.

This is to ensure the configuration tools build for the correct architecture and can find the cross

compiling tool chain. To make this task simpler a script file is provided to configure the environment
for a BCT TM1/HB5 build. Issue the following commands to run the script:

Kernel 3.14 (GCC4.9):

cd /embedded/projects/tml/1L3.14.28 1.0.1 ga
source ./setenv-hfp.sh

Kernel 4.9 (GCC7.3):

cd /embedded/projects/tml/L4.9.88 2.0.0
source ./setenv-hfp.sh

3. Building required components for Ubuntu Core

3.1 Installing the Ubuntu Core root filesystem

There are many Linux distributions available that are compatible with BCT TM1/HB5. Ubuntu was
chosen as the main distribution for TM1, as it has a large pre-compiled package database, and easy
to use configuration tools. Ubuntu is not the ideal choice for all Linux projects, but it will allow a
balsic operating system to be constructed quickly to allow evaluation of the BCT TM1/HB5. For
smaller embedded OS requirement consider using Buildroot to generate a root filesystem from
scratch. See section 4 for details.

The process of creating an Ubuntu root filesystem for BCT TM1/HBS5 consists of the following steps.

e Extract an Ubuntu image into the staging directory

o Add kernel modules and other specific support to the root filesystem.

e Boot the generated Ubuntu root filesystem on a BCT TM1/HBS.

e Configure the Ubuntu root filesystem using, apt-get, synaptic package manager, or another
package manager.

To support the BCT TM1/HB5 hardware and kernel, various files need to be copied to the root
filesystem. To simplify this process all build components that need to modify the root filesystem are
configured to do so at the nfs staging location, “/nfs/rootfs”. We must extract a root filesystem as a
starting point to this location.

For convenience a pre-built root filesystem is included in the TM1/HB5 download. It can be
extracted using the following commands.

Kernel 3.14 (GCC4.9):

cd /embedded/projects/tml/L3.14.28 1.0.1 ga
./extractubunturootfsimagel.26.sh

Kernel 4.9 (GCC7.3):

cd /embedded/projects/tml/L4.9.88 2.0.0
./extractubunturootfsimagel.26.sh

At this point Linux Kernel modules, and any other specific support must be added to the root
filesystem. The following sections describe this process.

10

3.2 Compiling the Linux Kernel

To compile the kernel we mxjust enter the root of the kernel source tree, make some configuration
changes and use make to start the compile. Issue the following commands. The process for
compiling kernel 3.14 and kernel 4.9 is identical apart from the root directory where the build
commands are issued:

Kernel 3.14:
cd /embedded/projects/tml/L3.14.28 1.0.1 ga
source ./setenv-hfp.sh
cd /embedded/projects/tml/L3.14.28 1.0.1 ga/linux-tml/

Kernel 4.9:
cd /embedded/projects/tml/L4.9.88_2.0.0
source ./setenv-hfp.sh
cd /embedded/projects/tml/L4.9.88 2.0.0/linux-tml/

./build.sh

When the compilation process has completed it will leave a Linux kernel (zlmage) at,
“./arch/arm/boot/zlmage”, and, “/tftpboot/zImage”.

The TM1/HB5 kernel implements the device tree model for configuring a hardware platform. The
TM1/HBS5 kernel includes four configurations for the various versions of the HB5 host board.

Device tree definition

Description

tm1-hb5-43-c.dtb

HB5 with 4.3 Inch LCD and capacitive touch

tm1-hb5-43-r.dtb

HB5 with 4.3 Inch LCD and resistive touch

tm1-hb5-7-c.dtb

HB5 with 7 Inch LCD and capacitive touch

tm1-hb5-7-r.dtb

HB5 with 7 Inch LCD and resistive touch

tm1-hb5-9-c.dtb

HB5 with 9 Inch LCD and capacitive touch

tm1-hb5-cb3-43-c.dtb

HB5 + CB3 with 4.3 Inch LCD and capacitive touch

tm1-hb5-cb3-43-r.dtb

HB5 + CB3 with 4.3 Inch LCD and resistive touch

tm1-hb5-cb3-7-c.dtb

HB5 + CB3 with 7 Inch LCD and capacitive touch

tm1-hb5-cb3-7-r.dtb

HB5 + CB3 with 7 Inch LCD and resistive touch

tm1-hb5-cb3-9-c.dtb

HB5 + CB3 with 9 Inch LCD and capacitive touch

build.sh is an example of a script file that simplifies the process of building BCT TM1 /HB5 Linux

components. Please study these files for an understanding of their purpose.

If changes are required to the kernel configuration the command “make menuconfig” can be used
to present a menu based configuration utility for the Linux kernel. If any changes are made using the
menuconfig tool, the “. /rebuild.sh” command must be issued.

If you change the configuration your new configuration can be saved with

make savedefconfig
cp defconfig /arch/arm/configs/tml_defconfig
rm defconfig

11

Once the kernel has been compiled, the kernel modules must be copied to the root filesystem.
Issuing the following command performs this task.

sudo ./installmodulesrootfs.sh

The modules are installed to the rootfs directory where the root filesystem that was previous
extracted to in section 3.1.

Note:

zimage can be found in sdcard partition1 /dev/mmcblkOp1

The modules generated by the build process can be copied directly to the SDcard or emmc in the
/lib/modules directory to avoid a complete reprogram using the TMx-Reprogramming utility

Note: zimage can be found in sdcard partition1 /dev/mmcblkOp1

3.2.1 Compiling the Linux Kernel 4.9 with modularised WiFi

drivers

Linux kernel 4.9 for TM1 on-board WiFi can be compiled either with embedded WiFi driver or
modular WiFi driver. The Linux kernel build config file used in the previous section (tm1_defconfig)
builds the WiFi driver as embedded. To build the Linux kernel with modularised WiFi drivers use
tm1lwl_defconfig configuration file. The pros and cons for these two build options are as follows:

Embedded WiFi driver:

- A module file (.ko) is not required to be present on the root file system to make the WiFi
functional. This may reduce root-fs size for size critical systems.

- WiFi Firmware blobs are embedded in the kernel binary. This reduces the size and
maintenance of the root-fs, but the firmware blobs can’t be updated without recompiling
the whole kernel.

- TIs ‘wlconf’ tool can’t be used to dynamically change and test WiFi options that affect speed
and connection quality.

Modularised WiFi driver:

- Matching module files (.ko) are required to be present on the root file system to make the
WiFi functional. This adds size and maintenance overhead.
- WiFi firmware blobs are required to be present on the root file system:
o /lib/firmware/ti-connectivity/TlInit_11.8.32.bts
o /lib/firmware/ti-connectivity/wl18xx-conf.bin

12

/lib/firmware/ti-connectivity/wl18xx-fw-4.bin
/lib/firmware/TlInit_11.8.32.bts
/lib/firmware/regulatory.db

o O O

o /lib/firmware/regulatory.db.p7s
- TI's ‘wlconf’ tool can be used to dynamically change and test WiFi options that affect speed
and connection quality.

Note: ensure the Linux kernel git repository is updated to be able to build the modularised WiFi
driver (see section 2.2 for more information).

3.3 U-Boot Bootloader — Ported (http://www.denx.de/wiki/U-Boot)

U-Boot 2014.04 has been ported to work with TM1/HB5. Its purpose is to initialise the hardware,
and boot a Linux operating system.

To build U-Boot for BCT TM1/HB5 issue the following commands.

Kernel 3.14 & Kernel 4.9:

cd /embedded/projects/tml/uboot-tmlmak
./buildlinuxtmlhb5.sh

The compiled boot loader is "u-boot.imx". The script file also copies the boot loader the /tftpboot
directory.

3.4 WiLink8 Wi-FI/BT support

This section only applies to images using kernel 3.14.

To support the Wi-Fi/BT module implemented on TM1, various software components must be
installed in the root filesystem. These components include, Wi-Fi driver kernel modules, Wi-Fi
firmware, BT firmware, and BT UIM utility. To install the components in the Ubuntu core root
filesystem issue the following commands.

cd /embedded/projects/tml/L3.14.28 1.0.0_ga/wilink8-build-utilites
./buildtmllinux.sh

The script file uses the setup-envlinux environment configuration, which tells the tool where the
cross compiling toolchain, Linux kernel, and root filesystem are located.

After running the buildtm1linux.sh script the various software components will be present in the
target root filesystem.

3.5 Ubuntu Core system components summary

So far this document has described how to set up a build environment and how to build the various
components of a Linux Ubuntu Core operating system for BCT TM1/HB5. The components we have
built are as follows:

Kernel 3.14

13

Component

Location

Ubuntu Root

/embedded/projects/tm1/1L3.14.28 1.0.1_ga/rootfs

filesystem

Linux Kernel /embedded/projects/tm1/1L3.14.28_1.0.1_ga/linux-
tm1/arch/arm/boot/zimage

Device Tree /embedded/projects/tm1/1L3.14.28_1.0.1_ga linux-

Configurations

tm1/arch/arm/boot/dts/*.dtb

U-Boot

/embedded/projects/tm1/uboot-tm1/u-boot.imx

Kernel 4.9

Component Location

Ubuntu Root /embedded/projects/tm1/14.9.88_2.0.0/rootfs

filesystem

Linux Kernel /embedded/projects/tm1/L4.9.88_2.0.0/linux-tm1/arch/arm/boot/zImage
Device Tree /embedded/projects/tm1/L4.9.88_2.0.0/linux-tm1/arch/arm/boot/dts/*.dtb

Configurations

U-Boot

/embedded/projects/tm1/uboot-tm1/u-boot.imx

The install program replaces hb5.dtb on mmcblkOp1 with the contents of the appropriate dtb for the

selected system.

3.6 Kernel 4.9 Persistant logo boot

A persistant logo boot option has been added to the 4.9 kernel, this hides the normal frame buffer

until a command is sent to display it.

This feature can be enabled from the kernel command line or by setting it active with DTB option

Enabling using u-boot

Power on TM1 with a serial terminal connected to the debug com port

Press SPACE during the detection period to enter uboot shell

(very fast by default — press SPACE repeatedly as you power on)

Add persistantlogo=1 to mmcargs (or to netargs if booting by PXE)

Eg. change

mmcargs=setenv bootargs console=S{console},${baudrate} root=${mmcroot} loglevel=0

consoleblank=0

To

14

mmcargs=setenv bootargs console=S{console},${baudrate} root=${mmcroot} loglevel=0
consoleblank=0 persistantlogo=1

With the command

setenv mmcargs setenv bootargs console=S{console},${baudrate} root=5{mmcroot} loglevel=0
consoleblank=0 persistantlogo=1

Then save the environment with
saveenv

Reboot the TM1

Enabling using DTB

In the file
/embedded/projects/tm1/L4.9.88_2.0.0/linux-tm1/arch/arm/boot/dts/tm1-hb5.dts
Change persistantlogo = <0x0>; to persistantlogo = <0x1>;

To regenerate the dtb files, Issue the commands

cd /embedded/projects/tm1/.4.9.88_2.0.0/

Source ./setenv-hfp.sh

cd linux-tm1

.Jrebuild.sh

Then copy the dtb files generated
/embedded/projects/tm1/L4.9.88_2.0.0/linux-tm1/arch/arm/boot/dts/*.dtb
To the TMx installer directory

Once boot has completed setting a 0 into /sys/class/graphics/fb0/device/show_fb2 will display the
normal screen and setting a 1 will hide it again.

From the debug terminal linux command line

sudo chmod 777 /sys/class/graphics/fb0/device/show_£fb2
echo 0 > /sys/class/graphics/fb0/device/show_£fb2 To display normal framebuffer, or

echo 1 > /sys/class/graphics/fb0/device/show_£b2 To blank framebuffer

15

4.0 Building embedded Linux with Buildroot

4.1.1 Buildroot introduction

Buildroot is a build system that aids the process of building the various components of an Embedded
Linux system in a single environment. We think Buildroot is easy to get to grips with, and provides a
reasonable amount of package support.

Buildroot 2016.02 (for kernel 3.14) and buildroot 2018.02 (for kernel 4.9) are provided in the Linux
download for TM1/HBS5. Each contain two sample configurations which build the Linux kernel, and a
root filesystem.

4.1.2 Buildroot git repository
Buildroot source code for kernel 4.9 can be integrated with Blue Chip’s git repository (if not done
already).

To check whether the Buildroot source code is backed by a git repository use the following
commands:

cd /embedded/projects/tml/L4.9.88_2.0.0/buildroot-2018.02.8
git remote -v

If the response reads:

fatal: Not a git repository (or any of the parent directories): .git
then the git repository is not set-up. You can set-up the git repository as follows:

cd /embedded/projects/tml/L4.9.88_2.0.0/buildroot-2018.02.8

git init

git remote add origin http://dl.bluechiptechnology.com/dl/tml/software
/linux/L4.9.88 2.0.0/buildroot-2018.02.8.git

Note that the above 2 lines are a single command starting with ‘git remote ...".

git fetch origin
git reset --hard origin/master

If the git repo is already initialised, you can update the contents by issuing the following command:

git pull origin master

4.2.1 Quickboot demo, with MPlayer support

This configuration is designed to be small and demonstrate a quick ~3 second boot time. MPlayer is
included in the configuration, and is configured to automatically play videos found in the root of a
USB flash drive during boot. AVI, and MP4 video formats are supported, and video resolutions must
match the target LCD screen resolution.

To reduce the final image size this configuration uses the Buildroot uclibc cross compiling toolchain.

To build the quickboot configuration issue the following commands.

16

Kernel 3.14:

cd /embedded/projects/tml/L3.14.28 1.0.1 ga/buildroot-2016.02
make distclean

make tml mplayerquickbootdemo defconfig

make -j2

Kernel 4.9:

cd /embedded/projects/tml/L4.9.88 2.0.0/buildroot-2018.02.8
make distclean

make tml mplayerquickbootdemo defconfig

make -j2

4.2.2 QTS, and BlueZ 5

This configuration will build a root filesystem containing QT5 libraries, QT5 sample applications, and
BlueZ libraries. To aid in remote QTS5 application deployment, the image is configured with an SSH
server, and will print the local IP address to the LCD screen at boot time. The root user is configured
with a password of, “password”.

To build this configuration issue the following commands.

Kernel 3.14:

cd /embedded/projects/tml/L3.14.28 1.0.1 ga/buildroot-2016.02
make distclean

make tml gtS5sample defconfig

make -j2

Kernel 4.9:

cd /embedded/projects/tml/L4.9.88 2.0.0/buildroot-2018.02.8
Make distclean

make tml gt5 defconfig

make -j2

4.3.1 Adding WiFi/BT components to the Buildroot staging area

This section is only required for images using kernel 3.14.

The WiFi/BT software components are not integrated into the Buildroot environment, and must be
manually added to the Buildroot staging area.

After successful completion of either section 4.2.1 or 4.2.2 issue the following commands:

cd /embedded/projects/tml/L3.14.28 1.0.1 ga/wilink8-build-utilites/
./buildtmlbuildroot.sh

17

After completion of the above command the WiFi/BT components will be present in the Buildroot
staging area. To repackage the Buildroot root filesystem, and include the WiFi/BT components issue
the following commands:

cd /embedded/projects/tml/buildroot-2016.02
make -j2

4.3.2 Building Buildroot with modularised WiFi/BT drivers

This option is only available for images using kernel 4.9.

The Buildroot git repository and Linux kernel 4.9 git repository must be updated to make the
following commands to work (see section 4.1.2 for more information how to update Buildroot git
repository and its contents).

To build QT5 Buildroot demo image with modularised WiFi kernel drivers (see section 3.2.1 for more
information) issue the following commands:

cd /embedded/projects/tml/L4.9.88_2.0.0/buildroot-2018.02.8
Make distclean

make tml gt5 wl defconfig

make -j2

4.4 Buildroot outputs
After the build completion of either section 4.2.1 or 4.2.2, or 4.3, the built components of the
embedded Linux system as follows:

Buildroot 2016

Component Location

Root filesystem /embedded/projects/tm1/buildroot-2016.02/output/images/rootfs.tar.bz2
Linux Kernel /embedded/projects/tm1/buildroot-2016.02/output/images/zlmage
Device Tree /embedded/projects/tm1/buildroot-2016.02/output/images /*.dtb
Configurations

Buildroot 2018

Component Location

Root filesystem /embedded/projects/tm1/buildroot-2018.02.8/output/images/rootfs.tar.bz2
Linux Kernel /embedded/projects/tm1/buildroot-2018.02.8/output/images/zlmage
Device Tree /embedded/projects/tm1/buildroot-2018.02.8/output/images /*.dtb
Configurations

18

S. Updating the firmware / software on TM1

5.1 TMx update utility operation

The TMx update utility is a Windows based tool that provisions for programming operating system

firmware into the onboard storage of TM1. The utility can be downloaded and installed from the

Blue Chip Technology website. See the following link for the latest version of the utility. At time of

writing V1.27 is the latest version.

https://www.bluechiptechnology.com/product/tm1/

To update a TM1 module firmware using this utility, follow the below steps:

1.

e

Launch the utility using either the desktop or start menu shortcut

Select module type. Note: TM1 emmc / uSD options refer solely to the storage media
populated on the TM1 module.

Select host board type

Select LCD and touch screen type

Select desired operating system.

Press the start button

Attach a USB A -> mini B cable between the PC and TM1 / HBS.

Power on the hardware with the BOOT_MODE# pin shorted to ground.

Follow the onscreen messages and wait for completion

10. Reboot the unit to try out the new operating system.

19

V242

_ é‘/ TMx HBx Update Utility Vv1.20
\%}ra\
J Library Version
o
TMT -eMMC
HB5 /HB6

43" Capacitive

Linux 4.9 Ubuntu 18.04 LXDE

Program Status

Programming firmware...
Sending and writting rootfs

Operation Progress

Overall Progress

=]

— "
- Thix Hix Update Uty

\\. é')' TMx HBx Update Utility V1.20
- -
%}'5&
j Library Version V242
| 4F
TM1 -eMMC
HEBS [HB6

Stop
43" Capacitive

Linux 4.9 Ubuntu 18.04 LXDE

Program Status

Programming complete

Operation Progress

Overall Progress

5.2 TMx update utility firmware locations

Depending on the selected options in the update utility, specific firmware will be written to the TM1.

For Linux operating systems the associated firmware files are located in the following location

<Install Path>\firmware\tm1\linuxfiles

If the default installation path was chosen for the install the firmware files will be located in the

following locations:

C:\Program Files (x86)\Blue Chip Technology\TM1 Update Utility Version
1.27\firmware\tm1\linuxfiles\4.9

The files in this directory are for kernel 4.9 and have the following purpose

Filename

Description

tm1-hb5-43-c.dtb

HB5 with 4.3 Inch LCD and capacitive touch

tm1-hb5-43-r.dtb

HB5 with 4.3 Inch LCD and resistive touch

tm1-hb5-7-c.dtb

HB5 with 7 Inch LCD and capacitive touch

tm1-hb5-7-r.dtb

HB5 with 7 Inch LCD and resistive touch

tm1-hb5-9-c.dtb

HB5 with 9 Inch LCD and capacitive touch

tm1-hb5-cb3-43-c.dtb

HB5 + CB3 with 4.3 Inch LCD and capacitive touch

tm1-hb5-cb3-43-r.dtb

HB5 + CB3 with 4.3 Inch LCD and resistive touch

tm1-hb5-cb3-7-c.dtb

HB5 + CB3 with 7 Inch LCD and capacitive touch

tm1-hb5-cb3-7-r.dtb

HB5 + CB3 with 7 Inch LCD and resistive touch

tm1-hb5-cb3-9-c.dtb

HB5 + CB3 with 9 Inch LCD and capacitive touch

zlmagelLinuxTM1

Linux kernel 4.9 built with tm1lwl_defconfig used for
Ubuntu 22.04 rootfs

zImageLinuxTM1brmp

Linux kernel 4.9 built with tm1wl_defconfig used for
buildroot mplayer demo rootfs

20

zImageLinuxTM1brqt5 Linux kernel 4.9 built with tm1wl_defconfig used for
buildroot QT5 demo rootfs

rootfsubuntu2204ixde.tar.bz2 Ubuntu 22.04 root filesystem. See section 3
gt5rootfs.tar.bz2 QT5.9 root filesystem. See section 4.2.2
mplayerquickbootrootfs.tar.bz2 MPlayer quick boot root filesystem. See section 4.2.1

By over-writing these files with the files generated in sections 3 and 4 it is possible to deploy
compiled firmware to the TM1 module. Alternatively, if the only required update is to the root
filesystem, the TMx update utility has a, “Linux (Other)” option for manually selecting a custom root
filesystem from the local machine. The root filesystem must be in tar.bz2 format.

- Thix HEx Update Uty

\\.. t‘“‘) TMx HBx Updale Utility V1.20
\;ﬁ}-q

/ Library Version V242
e

Configuration Settings

Module Type
[TM1 - eMmc

Hostboard Type
|HB5/HBS

LCD Type
|4.3" Capacitive

Operating System
|Linux (Other)

Ckeithrootfsuburntu 1804bde tar bz2

Note: the TMx Update Utility version 1.27 no longer offers installation options based on Linux kernel
3.14. If you need to install Operating systems based on Linux kernel 3.14 please use previous version
of TMx Update Utility 1.26 available upon request. In such case, make sure the Linux kernel 3.9 was
rebuilt with the latest fixes available from Git repository to avoid potential compatibility issues.

6. BCT TM1/HBS Hardware Setup in Linux

6.1 Debug Serial Console

Linux and U-boot for BCT TM1/HB5 heavily relies on access to a serial console. By default U-boot and
Linux are configured to use the RS232 port available on P2 of the HB5. By default the board is set to
communicate at 115200, 8, n, 1. Before turning on the TM1/HBS for the first time it is recommended
that this port be connected to a PC with terminal emulator software running. E.g. HyperTerminal.

21

6.2 BCT TM1/HBS Serial Ports
The UARTs on the HB5 are mapped as follows:

HB5 Header Linux Device Name

P4(RS232 RX + RS232 TX) /dev/ttymxcl

P4(CRX1IN CRX1P CTX1N CTX1P) /dev/ttymxc2

P2 /dev/ttymxcO (Linux console port)

6.2.1 RS-485 Manual Transmit Control

/dev/ttymxc2 is an RS485 / RS422 compatible port which has a transmit enable signal. This signal can
be controlled using GPIO 67. From the Linux console this signal can be manipulated using the
commands:

echo 67 >> /sys/class/gpio/export

echo out >> /sys/class/gpio/gpio67/direction
echo 1 >> /sys/class/gpio/gpio67/value

echo 0 >> /sys/class/gpio/gpio67/value

6.2.2 RS-485 Automatic Transmit Control

To improve software efficiency when communicating over an RS485 interface it is possible to
configure the TM1 Linux kernel to automatically control the transmit enable. The linux API for
configuring the UART in RS-485 mode can be viewed using the following link.

https://www.kernel.org/doc/Documentation/serial/serial-rs485.txt

The BCT application note RS485 BETA_ APP_NOTE also provides useful information on implementing
RS-485 with the TM1 platform.

6.2.3 UART DMA and FIFO Threshold

The TM1 UART driver in the Linux kernel is designed to be efficient at high throughputs and
baud rates. One technology that the driver uses is DMA (direct memory access) to provide
efficient transfer of data. A second technique that the driver uses is setting a high FIFO
threshold to limit the amount of interrupts requiring software servicing. While these driver
optimisations give good performance and efficiency at high throughputs, this is not always
the case for low baud rates and small amounts of data which tends to be the case with
protocols using RS-485.

22

To allow the DMA function to be disabled a file called dmaenabled has been added to the
sysfs for UARTS.

To disable UART DMA for the RS485 UART on TM1 the following command can be issued at
a console or through application software.

echo 0 > /sys/class/tty/ttymxc2/device/dmaenabled
Note: DMA must be disabled before application software opens the UART.

To allow the UART FIFO threshold to be configured a file called rxfifothreshold has been
added to the sysfs for UARTS.

To modify the UART FIFO threshold to 1 for the RS485 UART on TM1 the following
command can be issued at a console or through application software.

echo 1 > /sys/class/tty/ttymxc2/device/rxfifothreshold
The rxfifothreshold can be set to any value between 1 and 32.

Note: The FIFO threshold must be set before application software opens the UART.

23

6.3 BCT HBS GPIO

The recommended way to access the GPIO is using the SYSFS interface. This can be done using the
command line (or scripts), or can be done from inside an application.

The Linux GPIO documentation can be found here:
https://www .kernel.org/doc/Documentation/gpio/sysfs.txt

This following page also has some useful examples:
http://falsinsoft.blogspot.co.uk/2012/11/access-gpio-from-linux-user-space.html

By default, the GPIOs on TM1/HB5 are setup with pull-ups enabled. They are defined in the
pinctrl_hog_hostboard structure of the hb5.dts file (/embedded/projects/tm1/linux-
tm1/arch/arm/boot/dts/hb5.dts)

The logical GPIOs on the P15 header of HB5 map to the physical GPIO pins on the SOC as follows:
GPIO1 - 148
GPIO2 - 147
GPIO3 - 149
GPIO4 - 146
GPIOS5 - 128
GPIO6 - 125
GPIO7 - 127
GPIO8 - 13
GPIO9 - 31
GPI010 - 52
GPIO11 - 108
GPIO12 - 144

To setup and control GPIO 0 the following commands would be used:
echo 148 > /sys/class/gpio/export
echo out > /sys/class/gpio/gpiol48/direction
echo 1 > /sys/class/gpio/gpiold8/value

24

6.4 TM1 Wi-Fi Operation

Presuming that the Wi-Fi kernel modules have been compiled into the root filesystem, the Wi-Fi
kernel modules can be loaded with the following commands.

modprobe wll8xx
modprobe wlcore sdio
1s

If the modules were successfully loaded the wlan0 network device should be present. This can be
checked by issuing the following command.

ifconfig -a
The following commands can be used to enable the wlan0 interface, and scan for networks.

ifconfig wlanO up
iw wlan0 scan | grep SSID

6.5 TM1 BT 4.0 Operation

Presuming that the BT kernel modules have been compiled into the root filesystem, the BT kernel
modules can be loaded with the following commands.

modprobe btwilink

If the module was successfully loaded the hciO BT device should be present. This can be checked by
issuing the following command.

hciconfig

The following commands can be used to enable the BT interface, and scan for devices.

hciconfig hciO up
hcitool scan

6.6 TM1 Audio
The audio CODEC featured on TM1 implements the standard Linux ALSA API framework. Standard
commands like alsamixer, aplay, arecord, speaker-test will work.

6.7 HBS uSD Card

The uSD card connector featured on HB5 is mapped to mmc3 in the Linux kernel

6.8 TM1 Watchdog

The i.MX6 implemented on the TM1 module includes a watchdog that can reset the system. It is
implemented using the standard Linux Watchdog API.

25

http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/watchdog/watchd
og-api.txt

6.9 TM1 Power management

TM1 implements power and thermal management under software control. This can be configured
using the DVFS framework in the Linux kernel.

https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt

TM1 supports suspend to RAM, which allows the system to enter a low power mode (~<70mw) while
retaining the contents of RAM. This allows the system to resume to an operational state in a very
short period of time. To enter suspend to RAM mode the following command can be issued.

echo mem > /sys/power/state
The SLEEP_RQ# signal on HB5 is configured to wake the system up when in suspend to RAM mode.

6.10 HBS Class-D amplifier

The class D amplifier implemented on HB5 can be controlled using GPIO 66.

6.11 CB3 CAN Bus

The CB3 dual CAN bus are exposed by network devices can0 and canl.
Can-Utils can be used to test the CAN interfaces, which is preinstalled in the QT5 demo image.
https://github.com/linux-can/can-utils

The following commands can be issued in Linux to configure canO to display all messages received on
the bus.

ip link set can0 type can bitrate 1000000 triple-sampling on
ifconfig canO up

candump can0

6.12 LCD Backlight

The LCD backlight can be controlled using the standard Linux sysfs backlight class.

https://www.kernel.org/doc/Documentation/ABI/stable/sysfs-class-backlight

Kernel 3.14:

The following commands would set the backlight to 0%:

echo 0 > /sys/class/backlight/pwm-backlight.23/brightness
The following commands would set the backlight to 50%:

echo 50 > /sys/class/backlight/pwm-backlight.23/brightness
The following commands would set the backlight to 100%:

26

echo 100 > /sys/class/backlight/pwm-backlight.23/brightness
Kernel 4.9:

The following commands would set the backlight to 0%:

echo 0 > /sys/class/backlight/pwm-backlight/brightness
The following commands would set the backlight to 50%:

echo 50 > /sys/class/backlight/pwm-backlight/brightness
The following commands would set the backlight to 100%:

echo 100 > /sys/class/backlight/pwm-backlight/brightness

27

7. UBOOT operation

The u-boot version ported to the TM1 platform is V2014.04. At a high level its primary purpose is to
copy the Linux kernel, device tree configuration, and bootargs into memory before passing
execution over to the Linux kernel.

7.1 Configuring uboot

Configuration of uboot is performed by issuing commands over the debug serial console available on
P2 of HB5. The UART is configured to communicate with 115200,8,n,1 parameters. Connecting a null
modem cable between the HB5 and a development PC makes it possible to configure uboot using a
terminal emulator. E.g. Putty or HyperTerminal.

To enter configuration mode, uboot must receive a character over the serial port during power on.
The bootdelay parameter is set to 0 by default to give a fast boot time, which means that the time
window pressing the key is short.

The four most common commands used in uboot for TM1 are.
1. setenv—used to set an environment variable to a value.
2. printenv —used to display the current value of an environment variable.
3. editenv — used to edit an environment variable.
4. saveenv — save the environment

The remainder of this section will focus on the TM1 specific environment variables and how they
should be edited. Other commands are available, which can be viewed by issuing the command

“help”. The official uboot website is also a good source of information on uboot.

http://www.denx.de/wiki/U-Boot/

7.2 Uboot environment variables
The following table defines the Uboot variable related to the TM1 platform.

Variable Description

bootdelay The time window in seconds that Uboot will wait
for a key press to enter configuration mode.
Default value is O

mmcargs The bootargs passed to the Linux kernel when
booting from uSD or eMMC storage.

netargs The bootargs passed to the Linux kernel when
booting from NFS storage.

mmcroot The uSD/emmc partition to mount as the root
filesystem.

fdt_file The device tree blob file to load

serverip The IP address of tftpserver, and NFS server.
Used when booting over a network.

nfsroot The nfs root directory to mount on the host PC
when booting over NFS.

28

7.3 Uboot configuration examples

7.3.1 Changing the Uboot boot delay

setenv bootdelay 3
saveenv

7.3.2 Booting the Linux kernel over tftp and mounting a rootfs
over NFS

For 3.14.28 kernel

setenv serverip <IP address of development machine>
setenv nfsroot /nfs/3.14.rootfs

setenv bootcmd run netboot

saveenv

For 4.9.88 kernel

setenv serverip <IP address of development machine>
setenv nfsroot /nfs/4.9.rootfs

setenv bootcmd run netboot

saveenv

7.3.3 Enable capacitive multitouch in the Linux kernel
editenv mmcargs

append, “multitouch” and press return.

saveenv

7.3.4 Boot a root filesystem from the HBS uSD

set mmcroot /dev/mmcblk3pl rootwait rw
saveenv

29

8. QTS5 Application development introduction

The following section will detail how QT creator can be installed and configured to deploy a simple
“Hello World” app to the TM1 / HB5 platform over Ethernet. QT 5.5 and QT5.9 will be covered.

If you are using the BSP VM2.03 or later it is recommended that you increase the available screen
area displayable

Click

Program start tab, settings, display, resolution, keep this Configuration

8.1 QT5.5

QT5.5 has been tested with linux kernel L3.14 for the Linux 4.9 kernel use QT5.9 (see section 8.2)

The L3.14 kernel is not prebuilt in the board support package or on the BSP VM and this must be
built prior to configuring QT5,5 See section 4.2.2

8.1.1 Download and install QT Creator to the development
machine
On the same development machine that was used build the QT5 Buildroot root filesystem issue the

following commands to download QT creator, mark the download as executable, and run the
installer.

wget https://download.qt.io/new archive/qt/5.5/5.5.0/gt-opensource-linux-
x64-5.5.0-2.run

chmod a+x ./gt-opensource-linux-x64-5.5.1.run
./qt-opensource-linux-x64-5.5.1.run

Follow the installer prompts, and use the default configuration suggestions.

8.1.2 Setup the TM1 / HBS environment in QT Creator

QT Creator uses the notion of “Kits” which refer to development environment configurations,
targeting specific architectures, and devices. By default only a single kit is installed in QT creator that
targets applications running in the host environment. This section will focus on the setup of a kit
targeting TM1 running the Buildroot generated QT5 root filesystem created in section 4.2.2.

1. Ensure section 4.2.2 has been followed to create a QT5 based root filesystem for TM1/HB5

2. Use the TMx update utility to apply the QT5 image to TM1.

3. Boot the unit with an Ethernet cable attached. The LCD will display the IP address obtained
via DHCP. Make a note of this IP Address.

4. Launch QT creator

30

5. Navigate to Tools -> Options (if you are using BSP VM 2.03 enter the IP address from TM1

and click “Test” and continue from step 15)
¥ B QtCreator

" Qt Creator = & K
File Edit Build Debug Analyze

Window Help

C++ »
Projects Code Pasting 4 ; Open Project

QMLAS v

Recent Projects
| External]
Diff...

New to Qt?

own applications and explore
Qt Creator.

Get Started Now

& atAccount

@ Ot Cloud Services
M oniine Community
2\ Blogs

o User Guide

T !_E‘ Search Resu\is Application Output Compile Qutput QML/JS Console _

6. Inthe left hand pane select “Devices”, and then lick “add”.

* Options + x|

= | Devices
' Text Editor Devices

- g FakeVim Device: | Local PC (default for Desktop) :| | Add...

Hel
@ g General

Qe

W J Qt Quick

[(‘1} Build & Run

Name: Local PC

Type: Desktop
Auto-detected: Yes (id is "Desktop Device")

| Set Ag Default |

‘ Show Running Processes...

Current state: Unknown

@ Debugger

A Designer
B8 Analyzer

Dj Version Control

iy Android

Type Specific

v evices
Eﬁ Code Pasting
)‘ Qbs
| Apply Cancel | li
| 1
| | HQl O- Type scate (Cirl+K) Issuesﬁ Search Resul!sAppiication Output E Compile Output QmML/Js Consoie_

7. Select, “Generic Linux Device” and click, “Start Wizard”.

8. Set the device name to, “TM1”

9. Setthe host name or IP address to the IP address noted down in step 3.
10. Set the username to, “root”

11. Set the authentication type to password.

12. Set the users password to, “password”

13. Click next, and then click finish.

31

14. Verify that the Device test was successful and click close.

Connecting to host...
Checking kernel version...
Linux 3.14.28-tm1 armv7

Checking if specified ports are available...
All specified ports are available.

Device test finished successfully.

15. Press Apply in the Options Window.
16. In the left hand pane select “Build and Run”, and then select the “Compilers” tab. Click “add”

_> IIGCCII .

32

.N.i'im:e Type
¥ Auto-detected
GCC (x86 64bit in /usr/bin) GCC
GCC (x86 32bit in /usr/bin) GCC
Manual

17. Set Name to, “GCC QT5.5”.

18. Set Compiler path to, “/embedded/projects/tm1/L3.14.28 1.0.1_ga/buildroot-
2016.02/output/host/usr/bin/arm-linux-gnueabihf-gcc”

19. Click Apply

[Name Type
¥ Auto-detected
GCC (x86 64bit in /usr/bin) GCC
GCC (86 32bit in /usr/bin) GCC
v Manual
T Buildroot GCC

TM1 Buildroot GCC I

jects/tm1/buildroot-2016.02/output/host/usr/bin/arm-linux-gnueabihf-gcc

20. In the left hand pane select, “Build and Run” and then select the “Debuggers” tab. Click
Maddll'

33

Location | Type

System GDE at /usr/bin/gdb /usr/bin/gdb GDB
Manual

Version Control
3 Android

s QNX

. Devices

E Code Faslin__g_-

21. Set the name to, “TM1 QT 5.5 Debugger”
22. Set the path to, “/embedded/projects/tm1/L3.14.28_1.0.1_ga/buildroot-

2016.02/output/host/usr/bin/arm-linux-gnueabihf-gdb”
23. Click Apply

‘System GDB at /usr/bin/gdb /usr/bin/gdb
|Manual
TM1 Buildroot GDB /fembedded/projects/tm1/buildroot-2016.02/output/host/usr/

TM1 Buildroot GDB

24. In the left hand pane select, “Build and Run” and then select the “Qt Versions” tab. Click
MAdd”'

34

¥ Options + X
Filter Build & Run

@ Environment] General Kits ! Qt Versions | Compilers Debuggers CMake |

Text Editor Name gmake Location I Add... |
: ¥ Auto-detected —————
% FakeVim)) | Remave |
Qt 5.5.1 GCC 64bit fopt/Qt5.5.1/5.5/gcc_64/bin/gmake L R

@ Help Manual
{} Cit | Clean Up |

4 Qt Quick

(¥ Build & Run

a Debugger
)(Designer
Bl Analyzer

@ Version Control

i) Android

Code Pasting

o || o | (D

25. Click add and select the gmake executable, “/embedded/projects/tm1/

L3.14.28 1.0.1_ga/buildroot-2016.02/output/host/usr/bin/gmake”
26. Click Apply

Options + X
Build & Run

(M) environment () General Kits | QtVersions | Compilers | Debuggers CMake
Text Editor Mame gmake Location | Add... I
g FakeVim ¥ Auto-detected W

Qt5.5.1 GCC 64bit fopt/Qt5.5.1/5.5/gcc_64/bin/gmake ‘—,
@ Help ¥ Manual

TM1 Buildroot QTS fembedded/projects/tm1/buildroot-2016.02/output/host/usr/bin/gmake | Rl
{} e | CleanUp

411 Qt Quick

ﬁ Debugger
1 Designer

[Analyzer

Version Control Version name: [TM‘I Buildroot QT5 &]

ﬁ Android gmake |location: /embedded/projects/tm1/buildroot-2016.02/cutput/host/usr/binfgmake | Browse...

2o QNX : E
Qtversion 5.5.1 for Embedded Linux Details =

Devices : -

Code Pasting .Helpers: Nene available | Details =

o | o | I

27. In the left hand pane select, “Build and Run” and then select the “Kits” tab. Click “Add”.
If Using BSP VM v2.03 or later select TM1 QT5.5 and continue from step 33

35

-

if“ i

i Environment

c Text Editor
- |18 Fakevim
‘ @ Help
0o
] ot quick
T
B | (@ pebugger
| A Designer

[Analyzer

H mj Version Control

) Android

Options

| Build & Run

General | Kits = OtVersions Compilers Debuggers CMake

¥ Auto-detected
Desktop Qt 5.5.1 GCC 64bit
Manual

san QNX

n Devices
@ Code Pasting

Apply ||

Cancel |

Name |

‘T‘ Issues Search Results ﬁ Application Output ﬁ Compile Output QML/S Console _

28.
29.
30.
31.
32.

Set Name to, “TM1 QT5.5”

Set File system name to, “TM1”

Select Device Type to, “Generic Linux Device”

Select Device to, “TM1 (default for Generic Linux)”

Set Sysroot to, “/embedded/projects/tm1/L3.14.28 1.0.1_ga/buildroot-
2016.02/output/target”

Set Compiler to, “GCC QT5.5”

Set debugger to, “TM1QT5.5 Debugger”

Set Qt Version to, “Qt 5.5.1 (System)”

Click “manage” for Cmake tool

Click “Add”

Rename name to “CMake QT5.5”

Set path to “/embedded/projects/tm1/1L3.14.28 1.0.1_ga/buildroot-
2016.02/output/host/usr/bin/cmake”

Press “Make Default”

Press OK.

In the left hand pane select, “Build and Run” and then select the “Kits” tab.
Select “TM1 QT5.5”

Set CMake Tool to “Cmake QT5.5”

Press “Make Default”

Press OK.

33.
34.
35.
36.
37.
38.
39.

40.
41.
42.
43.
44,
45.
46.

36

8.1.3 Setup a simple QTS “Hello World” application

The following section will describe how to setup and deploy a simple “Hello world” application to
T™1.

1. Launch QT Creator
2. Select, “New Project”

¥ W Ot Creator

- Qt Creator + X

File Edit Build Debug Analyze Tools Window Help

@ New Project ; Open Project

Sessions Recent Projects

Examples

Tutorials

n default (last session)

New to Qt?

Learn how to develop your
own applications and explore
Qt Creator.

Get Started Now

‘ Qt Account
@ Ot Cloud Services
- Online Community

m Blogs

0 User Guide

| NI O~ Type to locate [Curi+K) nlssues Search Resullsﬁ.&pplicatien Oulputﬁ Compile Output QML/JS Console _

3. Select, “Qt Widgets Application” and click, “Choose”.

37

AR e Creates a Qt application for the desktop.
B ot console Application Includes a Qt Designer-based main
Library -4 Qt Quick Application Walow,

Other Project < QtQuick Controls Application Preselects a desktop Qt for building the

Non-Qt Praject N QtCanvas 3D Application application if available.
Import Project

Supported Platforms: Desktop
|Fesandeases Embeadsd Linux

4. Set the name to, “TM1_Hello_World” and click next

TM1_Hello_World

38

5. Select just the, “TM1 QT5.5” kit, and click next.

-

6. Use the default Class Information and click Next

39

7. Click Finish

8. Inthe Projects view, double click, “TM1_Hello_World.pro” file, to open the project editor.
9. Append the following to the bottom of the project configuration. This will tell the

deployment tool where on the target root filesystem to put the executable.

target.path=/
INSTALLS += target

TM1 _Hello World.pro - TM1_Hello World - Qt Creator

File Edit Build Debug Analyze Tools Window Help

®
N

Projects

L]

Analyze

(7)

Help

TM1_..orid

b

Release

Pro > e B

| v i@ TM1_Hello_World

T TM1_Hello World,pro
b [Oj Headers
b [g Sources
¥ [# Forms

| Open Documents
{"TM1_Hello_World_pro

| @l &~ Type o

& TM1_Hello World.pro

L e R R R
#
Project created by QtCreator 2016-05-25T09:22:36
#
T R R .
ar += core gui

greaterThan(QT_MAJOR_VERSION, 4}: QT += widgets

TARGET = TM1_Hello_World
TEMPLATE = app

SOURCES += main.cppy

mainwindow. cpp

HEADERS += mainwindow.h

'/ FORMS += mainwindow.ul

target.path=/

INSTALLS += target

Line: 1, Cok: 1

Search Resuhs Application Output n Campile Qutput QML/JS Consale _

40

10. In the Projects view, double click, “mainwindow.ui”, to open the forms designer.

Build Debug Analyze

Proje: ¥
| v i@ TM1_Hello_World
| TM1_Hello_World.pro
b [@j Headers
B i@ Sources
¥ & Forms
¥ mainwindow.ui

Debug

]

Projects

L]

Analyze

Toals

mainwindow.cpp - TM1_Hello_World - Qt Creator
Window Help

B ¢ ¥ B mainwindow.cpp b

>

1 #include "mainwindow.h"
#include "ui_mainwindow.h"

MainWindow: :MainWindow{OWidget *parent) :

OMainWindow(parent),
v ui{new Ui::MainWindow)

ui-=setupUifthis);
i

| ¥ MainWindow: :~Mainkindow()

delete ui;

<Select Symbol> =i B+

- Issu_es Search Results Application qu:ut_ Campile Ou_tputn QML Cunsule_

41

11. Scroll down to Display Widgets, and drag a label widget onto the form.
12. Use the property editor to change the label text to, “Hello World”

B mainwindow.ui-TM1_Hell.

-

File

Edit

Build Debug Analyze

mainwindow.ui - TM1_Hello World - Qt Creator

Window Help

Plain Text Edit
Spin Box
Double Spin Box
Time Edit

Date Edit

doREEl:

|T) Date/Time Edit

&) ial

@m=y Horizontal Scroll Bar
E] Vertical Scroll Bar

4= Horizontal Slider
%‘ Vertical Slider

Key Sequence Edit

Type Here .

Object
| ¥ Mainwindow

v Display Widgets

Ricilo World
u L] L]

label
menuBar
mainToolBar
statusBar

v 5§ centralwidget [7] Qwidget

Class
QMainWindov
% Qlabel
QMenuBar

QToolBar
QStatusBar

"% Label

@ Text Browser
% Graphics View
@ Calendar Widget
LCD Number
Progress Bar

= Horizontal Line
I vertical Line
l:l OpenGL Widget
7| 0Quickwidget

@ QWebView

Action Editor |

Signals & Slots Editor

label : QLabel

roperty Value
frameShadow [Plain
lineWidth i
midLineWidth [0

THe\Io World

textFormat | AutoText
_pbxmap
scaledContents O

P alignment :_ﬁli_gnLeft Alig...
wordWrap n 5
margin_ o

Hl O~ Type to locate (C

D -

arch Results Application Qutpu_i_: Compile Ou__tputH QMLYS Cnnsnle_

13. Select Build -> Build All (ctrl + shift +B), and click, “Save All” changes if prompted.

Save Changes

The following files have unsaved changes;

F; mainwindow.ul froot/TM1_Hello World

+ X

v {Alwiays save files before build:

Do not Savel l Cancel | ﬁ

42

14. Monitor the “4 Compile Output” window for build completion without errors.

B W mainwindow.ui-TM1_Hell

bt mainwindow.ui - TM1_Hello World - Qt Creator - + X
File Edit Build Debug Analyze Tools Window Help

0 = ~ | Object Class
) . b ypaines ‘ ‘ ¥ MainWindow QMai'r'lWind'ov
@ Plain Text Edit = : v 5§ centralWidget [7] Qwidget
E] Spin Box label % Qlabel
] . menuBar QMenuBar
ifil Double Spin Box o ok mainToolBar QToolBar
y @ Time Edit = = = statusBar QStatusBar
: Date Edit
Design T Filta
(1) Date/Time Edit L -
@- Dial Name Used Text Shortcut P— e — 5
De Ite = =
@=y Horizontal Scroll Bar label : QLabel |
Vertical Scroll Bar roperty value I
i 0= Horizontal Slider frameShadow [Plain
- ? Vertical Slider linewidth T
Ana Key Sequence Edit idLinewidth o :
v Display Widgets QLabel . “
Label - . P text | Hello World
T textFormat AutoText
@ Text Browser Action Editor | Signals & Slots Editor et e oy
pile =1

I../TM1 Hello World -I. -isystem /embedded/projects/tml/buildroct-2016.082/output/host/usr/arm-buildroot-linux-
gnueabihf/sysroot/usr/include/qt5 -isystem /embedded/projects/tml/buildroot-2016.082/output/host/usr/arm-buildroot-
linux-gnueabihf/sysroot/usr/include/qt5/0tWidgets -isystem /embedded/projects/tml/buildroot-2016.02/output/host/usr/
arm-buildroot-linux-gnueabihf/sysroot/usr/include/qt5/0t6ui -isystem /fembedded/projects/tml/buildrect-2016.82/output/
host/usr/arm-buildroot-linux-gnueabihf/sysreot/usr/include/qt5/0tCore -I. -I. -I/embedded/projects/tml/
buildroot-2016.082/output/host/usr/mkspecs/devices/linux-buildroct-g++ -0 moc mainwindow.o moc mainwindow.cpp
/embedded/projects/tml/buildroot-2016.02/output/host/usr/bin/arm-linux-gnueabihf-g++ --sysroot=/embedded/projects/tml/
buildroot-2816.02/output/host/usr/arm-buildroot-Linux-gnueabihf/sysroot -o TM1 Hello World main.o mainwindow.o
moc_mainwindow.o -10Qt5Widgets -10t5Gui -10tSCore -1rt -1dl -lpthread

©9:33:56: The process "/usr/bin/make" exited normally.

09:33:56: Elapsed time: 00:06.

ocate {Curl+K) -Issuesﬁ Search Resultsﬁhpplicatien Output : _- “ompile O ML/JS Console JES|

15. Select Build -> Run (ctrl + R) to deploy and run the application on the TM1 hardware.

8.2 QTS.9

8.2.1 Download and install QT Creator to the development
machine
On the same development machine that was used build the QTS5 Buildroot root filesystem issue the

following commands to download QT creator, mark the download as executable, and run the
installer.

wget https://download.qt.io/archivechmod/qt/5.9/5.9.0/gqt-opensource-linux-
x64-5.9.0.run

chmod a+x ./gqt-opensource-linux-x64-5.9.0.run
./gt-opensource-linux-x64-5.9.0.run

Follow the installer prompts, and use the default configuration suggestions.

43

8.2.2 Setup the TM1 / HBS environment in QT Creator

QT Creator uses the notion of “Kits” which refer to development environment configurations,

targeting specific architectures, and devices. By default only a single kit is installed in QT creator that

targets applications running in the host environment. This section will focus on the setup of a kit

targeting TM1 running the Buildroot generated QT5 root filesystem created in section 4.2.2.

47.
48.
49.

50.

51.
52.

53.

Ensure section 4.2.2 has been followed to create a QT5 based root filesystem for TM1/HB5
Use the TMx update utility to apply the QTS5 image to TM1.

Boot the unit with an Ethernet cable attached. The LCD will display the IP address obtained
via DHCP. Make a note of this IP Address.

Launch QT creator

Navigate to Tools -> Options

In the left hand pane select “Devices” and then select the Devices tab. (if you are using BSP
VM 2.03 enter the IP address from TM1 and click “Test” and continue from step 60)

file Edit Debug Analyze Tools Window Help

| projects | [Szt i Pamies

| = Options + x
— B s Android | QNX | Devices
— [Environment Device: | TMI1 (QT 5.9) (default for Generic Linux) T Add
B Text Editor i Remove
2 Fakevi
New to Qt: K. rakevim MName: M1 (QT 5.9)
p © nelp Type: Genenic Linux Test
0 o Aute-detected: No Show Running Processes..
I Current state: - Unknown
| Getstarted Now A quQuick Deploy Public Key...
2 BuidsRun Type Specific
Debugger Machine type: Physical Device
Authentication type: @ Password | Key | Keyvia ssh-agent
/ Designer
Host name 100.0.181 ssHport: |22 |2l [Checkhostkey
[F anslyzer
Free ports: 10000-10100 Timeout: | 10s

W Version Control

“ e =

Password: Show password
[& Code Pasting
Create New...
JA Testing
GDB server executable: |Loa
Apply || Cancel oK
A Quaccount
M Oniirie Community
N Blogs
© user Guice

bl 1s5ues BB search Results JEN Application output JE8 compile utput JEY Debugger Console JEY Test Results [

Click Add, select, “Generic Linux Device” and click, “Start Wizard”.

44

File Edit Debug Analyze Took Window Help

‘ Projects

3 Environment
B TextEditor
New to Qt? M Fakevim
r @ Hep
{} o
Get Started Now A ot Quick
A Build & Run
AF Debugger
/" Designer
IF Analyzer

B version control

Devices.

[code Pasting

& Testing

w1 [search in Examples

Devices

Android QNX | Devices

Device: TM1 (QT 5.9) (default for Generic Linux) -

Device Configuration Wizard Selection + x -
General |

| Available device types: 3
[

Linux Device £

QNX Device

Name:
I
Type: (4
Auto-detected: §
Currentstate: {
Type Specific
|
Machine type:
Authentication 1y
Host name:
Free ports:

Username:

* Cancel tart Wizard |

Password:
Create New,

GDB server executable: |1 =ave =mpty 10 1o =

Apply

Add,.

Remove

Test

Show Running Processes...

Daploy Public Key...

% Cancel

oK

A otacount
M Oniine Communiity
2\ Bogs

@ vserGuide

{l 1ssues JEY search Results

54.
55.
56.
57.
58.

File Edit Debug Analyze Tools Window Help

‘ Projects

£l Application Dutput JJE Compile Output

Set the device name to, “TM1 QT5.9”
Set the host name or IP address to the IP address noted down in step 3.
Set the username to, “root”

Set the authentication type to password.
Set the users password to, “password”

Examples
EZ Devices
@ & xis Android QNX | Devices

) Environment Device: | TM1 (QT 5.9) (default for Generic Linux) - Add...

B TextEditor z New Generic Linux Device Configuration Setup T —
New to Qt? ¥ Fakevim Connection i

our @ Help [test
o 2 Eanacti The name to identify this configuration: [TM1 Pning Processes...
Get Started Now A Qtouick The device's host name or 1P address: 10.0.0.97 By Public Key...

A Build&Run The username to log into the device: | |

A¥ Debugger The authentication type: ® Password Key Agent

/" Designer The user's password:

¥ analyzer The file containing the user's private key:

B version control

[B Code Pasting ‘ Bext> Cancel

Ty - T e =TT =
& Testing
GOB server executable: || <ave =mpt -
Apply * Cancel + oK

L qracount
MR Oriine Community
N Blogs

@ user Guide

59. Click Next, click Finish and verify that the Device test was successful and click close.

45

Connecting to host...
Checking kernel version...
Linux 4.9.88 armv7l

Checking if specified ports are avai lable...
All specified ports are available.

Device test finished successfully.

60. Press Apply in the Options Window.
61. In the left hand pane select “Compilers” tab. Click “add” -> “GCC ”->"C”

Name Type
¥ Auto-detected
GCC (x86 64bit in /usr/bin) GCC
GCC (x86 32bit in /usr/bin) GCC
Manual

62. Set Name to, “TM1 QT5.9”.

46

63. Set Compiler path to, "/embedded/projects/tm1/L4.9.88_2.0.0/buildroot-
2018.02.8/output/host/usr/bin/arm-linux-gnueabihf-g++”

64. Click Apply

65. Click “add” -> “GCC ”->"C++”

66. Set Name to, “TM1 QT5.9”.

67. Set Compiler path to, "/embedded/projects/tm1/L4.9.88 2.0.0/buildroot-
2018.02.8/output/host/usr/bin/arm-linux-gnueabihf-gcc”

file Edit Debug Analyze Tools Window Help

Kits

_ Kits | Qeversions Compiers | Debuggers | Gbs CMake
I3 environment Name Type <[asa -
GCC (%86 32bit in /usribin) GCC
B rext editor GCC 4.8 (C~+, K86 G4BIL in /ust/bin) GCC Clone
GCC 4.8 (C++, %86 32hit in fusr/bin) GCC
Mo Fakevim GCC (C++, x86 6abitin Juse/bin) GCC e

@ rel GECC{C++, ¥86 32bit In Juse/bin) GCC
g GCC 4,8 (C++, %86 B4bit in /usr/bin) GCC

{} o+ GCC 4.8 (C++, x86 32bit in fusr/bin) GCC
* Manual
4 Qi Quick >
A Build & Run Ces
#E Debugger
/' Designer Name: T™1 Buildroot 2018 GCC
[Analyzer Compiler path: 88_2.0.0/build 18.02. i i b Browse..
Version Control Platform codegen flags:
3 pevices Platform linker flags:
Gh Code Pasting 281 arm-linux-generic-elf-32bit ~|jarm - - linux « |-|generic = |- alf ~ |- 32bit

18 Testing

68. In the left hand pane select, the “Debuggers” tab. Click “add”.

69. Set the name to, “TM1 QT 5.9 Debugger”

70. Set the path to, "/embedded/projects/tm1/14.9.88 2.0.0/buildroot-
2018.02.8/output/host/usr/bin/arm-linux-gnueabihf-gdb”

71. Click Apply

47

File Edit Debug Analyze Tools Window Help

> Options %
Kits
its Kits | QtVersions Compilers = Debuggers | Qbs CMake
[Environment Name Location Type Add
* Auto-detected
B Text Editor System GDB at /usribin/gdb /usribin/gdh 0B
~ Manual

X Fakevim TM1 Buildroot GDE w1 /buildroot 2016 binf.gdo o8
@ e TM1 Buildroot 2018 GDB tm1/L4.9.88_2.0.0/b 0 DB

{} o=
4 otQuick

A Build & Run
AF Debugger

/" Designer

[E Analyzer

B version control
C3 pevices

[B Code Pasting
I g

J Apply % Cancel Jok |

il 1ssues JEY search Results JEY Application Output 3 compile Output BER Debugger Console JEH Test Results J1E3

72. In the left hand pane select “Qt Versions” tab. Click “Add”.

73. Click add and select the gmake executable,
/embedded/projects/tm1/L4.9.88_2.0.0/buildroot-2018.02.8/output/host/usr/bin/gmake”

74. Click Apply

<no document>

Kits | Qtversions | Compllers | Debuggers | Gbs = ChMake

[enwvironment Name ~ gmake Location Add...
Auto-detected
B Text editor ~ Manual Remave
© Qt {qtSbase5.5.1) 1/buildroot-2016. .
M. fokevim © TM1 Buildroot QTS /embedded/projects/im1 /buildroot-2016.02/output/host/usr/bin/gmake

TH1 QIS8 /embedded/projects/tm1/L4.9.83 2.0.0/buildroot-2018,02.8/output/host/usribin/gmake Cleanup |

@ Help

{1 o+

4 Qtquick
A Build & Run
A Debugger
/' Designer
IF Analyzer

& Version Control

Version name: | TM1 QT5.9

g Devices

make location: 9.88.2.0.0/build ¥ - =
(B code Pasting ke local E T

18 esting @t version 5.9.6 for Embedded Linux Details » _

Apply | xcancel [Joxk |

75. In the left hand pane select, “Build and Run” and then select the “Kits” tab. Click “Add”.

48

Options + X

| Build & Run h

i Environment General | Kits = OtVersions Compilers Debuggers CMake

- Text Editor Name Add |

g FakeVim ¥ Auto-detected
Desktop Qt 5.5.1 GCC 64bit

@ Help Manual Remove
{} C++ Make Dafault
J Qt Quick
(* Build & Run
Pr . @ Debugger

j Designer
[Analyzer

Dj Version Control

) Android

san QNX

n Devices
@ Code Pasting

Apply H Cancel |

| N ©- Type to locate (Ciri+K) Issues Search Resultshppti(atien Qutput ﬂ Compile Output QML/5 Ccnso[e_

76. Set Name to, “TM1 (5.9)"

77. Set File system name to, “TM1”

78. Select Device Type to, “Generic Linux Device”

79. Select Device to, “TM1 (QT 5.9) (default for Generic Linux)”
80. Set Sysroot to, “/embedded/projects/tm1/L4.9.88 2.0.0/buildroot-2018.02/output/target”
81. Set Compiler C to, “TM1 QT5.9”

82. Set Compiler C++ to, “TM1 QT5.9”

83. Set debugger to, “TM1 QT 5.9 Debugger”

84. Set Qt Version to, “Qt 5.9.6 (System)”

85. Press “Make Default”

86. Press OK.

8.2.3 Setup a simple QTS “Hello World” application

The following section will describe how to setup and deploy a simple “Hello world” application to
TM1.

16. Launch QT Creator
17. Select, “New Project”

49

- Ot Creator - =+ X
File Edit Build Debug Analyze Tools Window Help

) New Project F Open Project

Sessions Recent Projects

Tutorials

B detault (last session)

New to Qt?

Learn how to develop your
own applications and explore
Qt Creator.

Get Started Now

‘ Ot Account
@ Qt Cloud Services
- Online Commun ity

R\ slogs

o User Guide

- Issues Search Results E Application Dutpl.gt Compile Dutput QML/S Consule_

18. Select, “Qt Widgets Application” and click, “Choose”.

50

st : Creates a Qt application for the desktop.
i B ot console Application Includes a Qt Designer-based main
Library 1 Qi Quick Application window.
Other Praject <l QtQuick Controls Application Preselects a desktop Qt for building the
Non-Qt Project N QtCanvas 3D Application application if available.
Import Project

Supported Platforms: Desktop
|esandclasses | e setierins

19. Set the name to, “TM1_Hello_World” and click next

TM1_Hello_ World

20. Select the, “TM1 5.9” kit, and click next.

51

. Kit Selection
Location
< Kits Qt Creator can use the following kits for project TM1_Hello_World:
Details | select all kits
St Yy
|| T™1 QT5.9 h e l
I < Back ” Next > JI Cancel]

21. Use the default Class Information and click Next

mainwindow.ui

22. Click Finish
23. In the Projects view, double click, “TM1_Hello_World.pro” file, to open the project editor.

52

24. Append the following to the bottom of the project configuration. This will tell the
deployment tool where on the target root filesystem to put the executable.

target.path=/
INSTALLS += target

- TM1 _Hello World.pro - TM1_Hello World - Qt Creator - + X
File Edit Build Debug Analyze Tools Window Help

Projects > e B & TM1_Hello_World.pro X
o T T I | e e s
:-'-’td T TM1 Hello World.pro 3 #
b [Oj Headers

= i #
b [g Sources Tl
E ¥ [# Forms

o ar += core gui

Welcome ||

greaterThan(QT_MAJOR_VERSION, 4}: QT += widgets
|| TARGET = TM1_Hello_World
(o) | TEMPLATE = app
Debug

- SOURCES += main.cppy
.m 1 mainwindow. cpp

Projects
HEADERS += mainwindow.h

G '/ FORMS += mainwindow.ul
Analyze

target.path=/
(%] INSTALLS 4 target
Help |

| Open Documents
{"TM1_Hello_World_pro

b

Release

| BRI £~ Type to locate (Corl+K) Search ResthsApplicatinn Output n Compile Ou:put QMLYS Cnnsnse_

25. In the Projects view, double click, “mainwindow.ui”, to open the forms designer.

53

= mainwindow.cpp - TM1_Hello_World - Qt Creator - + X

Build Debug Analyze Tools Window Help

T s BoE ¢ % B mainwindow.cpp + | % | <Select Symbol> s # B+

| ¥ i T™M1_Hello_World 1 #include "mainwindow.h"
| TM1_Hello World.pro #include "ui mainwindow.h"

b |55 Headers s o © o ;
l:' MaLlnWindow: :MainWindow(QWidget *parent) :
B 2 Sources . OMainwWindow(parent),
v @& Forms v ui{new Ui::MainwWindow)
E} mainwindow.ui . o
ui-ssetupUi(this);
¥ MainWindow: :~Mainkindow()
P delete ui;
Debug
N
Projects

]

Analyze

Open Docu ts

| mainwindow.cpp

- Issu_es Search Results Application Output Compile Ou__tputa QMLIS Consule

26. Scroll down to Display Widgets, and drag a label widget onto the form.

54

27. Use the property editor to change the label text to, “Hello World”

¥ B mainwindow.ui-TM1_Hell..

-

File

g& T T

Edit

mainwindow.ui - TM1_Hello World - Qt Creator - + X

Build Debug Analyze Tools Window Help
Filte Object Class
] Type Here. | v Mainwindow QMainWindov
[AT] lain Text Edit = v 5§ centralWidget [7] Qwidget
@ Spin Box label % Qlabel
i S moinfoolBar QToolbar
® Time Edit :‘EHG!VO'ICE statusBar QstatusBar
5 Date Edit
|57} Date/Time Edit
{2} Dial
@=n Horizontal Scroll Bar
@ Vertical Scroll Bar
{}- Horizontal Slider
'%“ Vertical Slider :I!En' H .
Key Sequence Edit abel : QLabel |
X DiplayNidEets _troperty value
:% Label frameShadow [Ptain
A “Fext Browser el iy s i
% Graphics View IO
E Calendar Widget b
LCD Number | Hello world
Progress Bar textFormat !VAutoText
E Horizontal Line “Ei}:\.::gomenm | =
M vertical tine P alignment .ATignLeft, Alig... ‘ ‘
I:l OpenGL Widget wurd.Wrap II__I L
<7 0Quickwidget : m_argln i :'0'
@ awebview J| Action Editor | Signals & Slots Editor : - &

B £- Type to locate {Ctri+K) ll_ssues Search Results Application C_Iutput Compile Ou_tputﬁ QML/JS Cnnsule_

28. Select Build -> Build All (ctrl + shift +B), and click, “Save All” changes when prompted.

Save Changes

The following files have unsaved changes;

F mainwindow.ul froot/TM1_Hello Warld

+ X

wf iAlways save files before build:

Do not SEVE‘ I Cancel ‘ ﬁ

55

29. Monitor the “4 Compile Output” window for build completion without errors.

window.ui-T!

= mainwindow.ui - TM1_Hello World - Qt Creator - 4+ X
File Edit Build Debug Analyze Tools Window Help

0 Filte g ~ | Object Class
= T 1 e — S e
- . . by ypetiecs: H ¥ Mainwindow QMainWindaow
0 @ Plain Text Edit = : v 5§ centralwidget [Qwidget
= (1] spin Box label % QLabel
= = menuBar QMenuBar
: @ Bouble Spin Eox =-!EEIO'=Nor1d= mainToolBar QToolBar
‘ % @ Time Edit = = = statusBar QStatusBar
) iy ;
i Date Edit

% Date/Time Edit

) oial Mame Used Text Shortcut [F=— ———
@=n Horizontal Scroll Bar label : QLabel |
Vertical Scroll Bar roperty value
L frameshadow | Plain
P Vertical Slider lineWidth 1
Key Sequence Edit midLineWidth o ~
=
v Display Widgets Olabel : ‘ ‘
> Label b text Hello World
i textFormat AutoText

@ Text Browser | Action Editor | Signals & Slots Editor et it ot S

pile =1

I../TM1 Helle World -I. -isystem /embedded/projects/tml/buildroot-2816.02/output/host/usr/arm-buildroot-1linux-
gnueabihf/sysroot/usr/include/qt5 -isystem /embedded/projects/tml/buildroot-2016.02/output/host/usr/arm-buildroot-
linux-gnueabihf/sysroot/usr/include/qt5/QtWidgets -isystem /embedded/projects/tml/buildroot-2016.02/output/host/usr/
arm-buildroot-linux-gnueabihf/sysroot/usr/include/qt5/0t6ui -isystem /embedded/projects/tml/buildrect-2016.82/cutput/
host/usr/arm-buildroot-linux-gnueabihf/sysreot/usr/include/qt5/0tCore -I. -I. -I/embedded/projects/tml/
buildroot-2016.02/output/host/usr/mkspecs/devices/linux-buildroot-g++ -0 moc_mainwindow.o moc_mainwindow.cpp
/embedded/projects/tml/buildroot-2016.02/output/host/usr/bin/arm-linux-gnueabihf-g++ --sysroot=/embedded/projects/tml/
buildroot-2816.02/output/host/usr/arm-buildroot-Linux-gnueabihf/sysroot -o TM1 Hello World main.o mainwindow.o
moc_mainwindow.o -1Qt5Widgets -10t56ui -10t5Core -lrt -1dl -lpthread

@9:33:56: The process "/usr/bin/make" exited normally.

09:33:56: Elapsed time: 00:06.

HE O- Tyoe

ate [Ctri+K)

-Issues&aarch Results E Application Output i 3 | Compile Output| 51| omLijs Console IS

Select Build -> Run (ctrl + R) to deploy and run the application on the TM1 hardware.

56

Appendix A - Known Problems

With Releases prior to TMx-Update Utility 1.26 in the 4.9.xx linux kernel a mac address was set by
default overriding the mac address programmed during manufacture. If you see a mac address of
00:C0:46:00:00:01 you may resolve the issue by updating to the latest source code
tmllinuxv203.tar.bz2, git commit or later or by removing the reference to ethaddr in the uboot
environment.

Power on TM1, Press space (repeatedly) in a connected serial terminal (115200, 8,1,n)
Once you have entered the uboot prompt issue
setenv ethaddr

saveenv

57

Appendix B - Change Log

Issue

Date

Author

Changes

1.4

13/03/2019

K Robinson

First formal version including L4.9.88 release

1.5

30/05/2019

D Robinson

Moved u-boot directory
Added RS-485 UART section

Added UART DMA and FIFO threshold control section

1.6

03/11/2020

D Robinson

Linux 4.9 updated to resolve suspend resume, and fix RTC

1.7

20/12/2021

D Burnard

Added section 3.6 Kernel 4.9 Persistent logo boot
Documented fix & workaround for fixed mac address
Updated to match BSP 2.03

Updated to match BSP 2.03 Virtual Machine
Updated to match TMx Update Utility 1.26

Updated to support QT5.5 anf QT5.9 Build Process
Updated to correctly reflect QT5.9 Build Process

Updated GPIO pin definitions to match Hardware
Docunmentation

Kernels updated to resolve a compatibility issue with
recent batches of uSD Cards

1.8

18/06/2023

M Olejnik

Added section 3.2.1 Compiling the Linux Kernel 4.9 with
modularised WiFi drivers

Added section 4.1.2 Buildroot git repository

Added section 4.3.2 Building Buildroot with modularised
WiFi/BT drivers

1.8.1

19/06/2023

M Olejnik

Updated section 5.2. Removed references to kernel 3.14
and added legacy kernel installation note.

58

