BCNTDRV

WindowsNT " Drivers
for PCI Data Acquisition Cards

User Manual

BCTNTDRV

User Manual
Document Part N° 0127 1008
Document Reference 127-1008.doc
Document Issue Level 4.1

Manual covers Driversidentified v1.0, 2.0, 3.0, 4.0& 5.0

All rights reserved. No part of this publication may be reproduced, stored in any retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopied, recorded or
otherwise, without the prior permission, in writing, from the publisher. For permission in the UK
contact your supplier.

Information offered in this manual is correct at the time of printing. The supplier accepts no
responsibility for any inaccuracies. Thisinformation is subject to change without notice.

All trademarks and registered names acknowledged.

Amendment History

Issue Issue Author Amendment Details
Level Date
1.0 24.02.98 AJP First Release
2.0 20.04.98 AJP Added details of error log messages and a
description of InitlsoDigModes
3.0 31.07.98 AJP Added more detail of application
programming and alphbetised the function
order. Corrected analogue function gain
definitions.
4.0 14.09.98 AJP Added information for VB users regarding
INPUT and OUTPUT used as direction
parameters.

Contents

OUTLINE DESCRIPTIONouiiiiiiieiiiiiiiieieee e 1
1.0 IMPORTANT INFORMATIONooiiiiieiiiiiiiiiiiee e 2
2.0 INSTALLATION . ..ct e ettt ettt e e 3
2.1 FILES INSTALLED. ...ttt 3
3.0 USING THIS PRODUCT ...coviiieiiiiiiiiiieeee e 6
3.1 USING THE DRIVERS FROM C OR CH++...cccovvvviiiiiiiiiiinnn, 6
3.1.1 The BLUECHIP.H header file...........ccccoeeiiiii, 6
3.1.2 Compiling and LinKiNgoooovviiiiin 7
3.2 USING THE DRIVERS FROM VISUAL BASIC............ccuu..... 8
3.3 IDENTIFYING BOARDScooieeiiiiiiiiiiieeee e 8
3.4 APPLICATION DEVELOPMENToviiiiieeiiiiiiiieeeee e 10
3.4.1 Determine the board IDs and handles required............. 10
3.4.2 Initialise the handles and board ID structure.................. 11
3.4.3 Initialise the port directions in the 8255..............ccceveee. 11
3.4.4 Assign each allocated handletoa port.............coeeeeen. 12
3.4.5USING the POItS ..ccooeeeeeeeeeeeeee 12
3.4.6 Closing all open handlescccoooeiii, 14
3.5 ASYNCHRONOUS OPERATIONcovviieiiiiiiiiiiieee e 14
3.6 USING THE COUNTER TIMERS.cccoiiiiiiiiiieee e, 15
B7 PACING ...t 16
3.8 USING DIGITAL INPUT AND OUTPUTcccviiveeeeeieeeee, 20
38.APortsAand B, 20
3.8.2 SPlit POrt C...coeee e 21
3.9 WATCHDOG TIMER.......ccoiiiiiiiiiiiiiiiiee e 22
4.0 DRIVER API FUNCTIONScoiiiiiiiiiiiiie e 24

Blue Chip Technology Ltd. 127-1008

Contents

4.1 FUNCLION OVEIVIEWccvniiiieeeeee e 25
4.2 Function DescriptionsS..........cccccvvviiiiiii 26
4.2.1 Management FUNCLIONS ..., 26
BCTACQUIFEAPACETuuiiiiiiiiiiiiiiiiiiiiiiiiiieieieeeeeeeeieaeeees 26
2 O AN | [0 ToF= | (T 27
O 1O [0 = 27
o O I 720 I 28
BCTFINASENalNO.........eiviiiiieeeeeeee e 28
BCTGetBoardld...........oevviiiiieieeeeeeeeee e 29
BCTINEHANAIE ... ccveceeieeeee e 30
BCTINPACET ... 31
BCTOPEN .. 31
BCTREIEASE ...c.eeieeee e 33
BCTREIEASEAPACENuiiieeiiieieeeeeee e 33
BCTReleaseBoardld...........ccoovvviiieiiiiiiiiieceeceeeees 34
O I =T 34
4.2.2 Digital FUNCLIONScoooiiiiiiiii 35
BCTINItB255MOAEScvvieiiiiiieeieiee e 35
BCTINitISODIGMOUESuvuiiiiiiiiiiiiiiiiiieiiiiiiiiiiieieeiinenees 37
BCTREAAPOItccvviiiieieee e 39
BCTREadPOITL16ccvviieeeeeieeeee e 39
BCTWIHEBIL . e 40
BCTWIHEPOIM ... e 40
BCTWIHEEPOMLGevceveieiieee et 41
4.2.3 Analogue FUNCLIONS.........ccooviiiiiiiiiii 42
BCTAULOCAIAIN . .ccvviieee e 42
BCTINIAOULMOUES.......cceviiieiiieeeeeeee e 43
BCTReEadBIOCKAIN.......iiii e 44
BCTREAdAPOITAIN ... ccveicieee e 47
4.2.4 Counter FUNCHIONSccovniiiiieieeeee e 48
BCTProgramCOUNLENcccvvvriiiiieeeeieeeiiie e 48
4.2.5 Pacer FUNCLIONSuiiiviiiiieeeeeeeeee e 49
BCTAddPacerBIOCKIO.........ccvvieiiiieieeeeee e 49
BCTAddPacerFUuNCtionc.couveveieiieeeeeeeeeeeeee 52
BCTStartPacCercoveeviiieieee e 53
BCTStOPPACE........uuiiiieeiieeeiie e 53
4.2.6 Watchdog timer functions...........cccccovviiiiiii, 54
BCTREaAAWdtccvviiiieieee e 54
2 O Y= YAV | 54
BCTWaACHAOQG ... evvvviiiiiiiiiiiiiiiiiiiiieiiiiiiviiiivveveeeeeeeeenenees 55

127-1008 Blue Chip Technology Ltd.

Contents

5.0 EVENT LOG MESSAGES.........ccccciiiiiiiiii 56
5.1 ERROR CODESoiiiiiiiiiiiii 57
5.2 BCTGETLASTERROR.......ccoiviiiiiiiii 76
A.O LIBRARY DEFINED TYPES ..., 77
A.1 Platform Independent Data TYPeS........cccccvvviiiiiiiinininnnnn. 77
A.2 Enumerated TYPES ...coovvviiiiiiiiiiiii 77
A.3 Structure Definitions ... 79

Blue Chip Technology Ltd. 127-1008

Outline Description

OUTLINE DESCRIPTION

The Windows NT™ driver for PCl Data Acquisition Cards
(“the Windows NT driver”) provide a smple programming
interface to the supported range of PCI data acquisition cards
for application programmers using Windows NT™ as their
operating system.

The drivers provide the user with an application programming
interface (API) that gives access to the most commonly used
features of the PCI data acquisition boards. Not all of the
hardware functionality of the PCI data acquisition cardsis
supported by the driver.

If you require additional functionality, contact your supplier to
seeif alater version of driver is available.

Blue Chip Technology Ltd. 127-1008 Page 1

Page 2 Important Information

1.0 IMPORTANT INFORMATION

These drivers remain the property of the supplier. Please ensure
that you have read the license agreement printed on the disk
envelope and agree to it, and agree to be bound by the
conditions laid down in it prior to opening the envelope.

Opening the envelope is taken as agreement to the termslaid
down in the agreement printed upon it.

For up to date information regarding the drivers including any
limitations, etc. please consult the READ.ME file contained on
the installation diskette.

Page 2 127-1008 Blue Chip Technology Ltd.

Installation Page 3

2.0 INSTALLATION

To ingtall the Windows NT™ Drivers for PCI Data Acquisition
Cardsinsert disk 1 into the floppy drive and from Windows
Explorer select the appropriate floppy drive and run
SETUP.EXE.

Thiswill start the InstallShield wizard which will guide you
through the set up process.

On accepting the license agreement as displayed, the installation
will prompt for adirectory to be specified. The header files for
application programmers along with the sample code used for
calling the library and drivers will be copied into this directory.
Other files will be copied into the Windows NT™ system
directories, as appropriate.

2.1 FILESINSTALLED

The following files will be copied to the hard disk drive during
the installation of the Windows NT driver:

BCTNTDRV.SYS The kernel mode device driver for the
PCI data acquisition cards. Thisfileis
copied to the directory
\WINNT\SYSTEM32\DRIVERS.

Blue Chip Technology Ltd. 127-1008 Page 3

Page 4

Installation

BCDLL32.DLL

BLUECHIP.H

BCTYPESH

BCDLL32.LIB

BLUECHIP.BAS

The dynamic link library that provides
API functions to the application
programmer and interfaces them to the
kernel mode driver. Thisfileis copied to
the directory \WINNT\SY STEM 32

C and C++ header file containing the
function prototypes C and C++
applications.

C and C++ header file containing
constant definitions and APl specific

types.

C and C++ link library for compiler type
checking.

Thisisthe equivalent file to the two .H
header files and gives constants and
function prototypes for Visua Basic
users.

Page 4

127-1008 Blue Chip Technology Ltd.

Installation Page 5

These files are installed into the following directory structure
from the install directory specified:

<INSTALL DIR>

C (\H and .LIB files)

L—— Samples (Console mode C examples)
VB (.BAS files)

L—— Samples (Visual Basic examples)

Blue Chip Technology Ltd. 127-1008 Page 5

Page 6 Using the Product

3.0 USING THIS PRODUCT

To use the drivers and the associated library files, you will
require some experience of developing Windows applications.
Experienced programmers may choose to develop their
applications using C or C++. Alternatively, the DLL and the
underlying driver may also be called from development tools
such as Visual Basic, Delphi, C++ Builder, etc. In any of these
cases you will need to possess and be familiar with the
appropriate software development kit.

3.1 USING THE DRIVERS FROM C OR C++
3.1.1 The BLUECHIP.H header file

At the top of any source module which includes a call to
one of the functions provided by the DLL you should
include the header file BLUECHIP.H

The header file contains;

Function prototypes for each function in the library.
Thisisused by the ‘C’ compiler for parameter checking
when alibrary function is called, and ensures that
parameters of an incorrect type are not passed into the
library.

Symbolic names are used to identify each PCI board
type which is supported, along with driver specific
structures and error codes. Use these names when
making calls to the library and checking error codes
returned from library functions.

Page 6 127-1008 Blue Chip Technology Ltd.

Using the Product Page 7

3.1.2 Compiling and Linking

Once al modules have been coded and compile without
errors or warnings, they must be linked with the correct
libraries to form the finished executable file. In order
for the application to compile correctly the following
standard library include statements are required as a
minimum:

#i ncl ude <w ndows. h>
#i ncl ude <wi ni octl . h>
#i ncl ude <ti ne. h>

The BCDLL32.DLL is supplied with an import library,
BCDLL32.LIB. Although the import library does not
contain the actual library functions, it does contain
information which will allow each function included in
the dynamic link library to be resolved when called from
a C program. The import library must therefore be
specified as a library module when linking the compiled
modules of your C application.

The resulting Window’ s executable file is then aware
that these functions may be found external to the
executable file and must be 'linked in dynamically' at
run-time.

The standard Windows libraries and DLLs also needed
to build your application will be supplied with your
software development kit and should be described in the
documents supplied with that Kit.

Blue Chip Technology Ltd. 127-1008 Page 7

Page 8 Using the Product

3.2 USING THE DRIVERS FROM VISUAL BASIC

Accessing the library from a Visual BASIC program is straight-
forward. Simply include the file BLUECHIP.BAS as one of
your BASIC program's modules. Y ou may include the module
by selecting the 'Add File..." option on Visual BASIC's 'File
menu. Y our own modules may then call the library's functions.

BLUECHIP.BAS tells your program what functions are
available and where they may be found when called i.e. in the
file BCDLL32.DLL. It aso allows Visual BASIC to check the
parameters you pass to the functions and to provide any
parameter type conversion required.

BLUECHIP.BAS also contains the symbolic names used for the
Library's constants e.g. the board types, the function return
codes, status codes etc. These are described in later chapters
and should aways be used in you own code to improve
readability.

NOTE: The C header file defines two port direction constants
as INPUT and OUTPUT for 8 hit port directions. These are
both reserved works in Visual Basic so the constant expressions
inthe BLUECHIP.BAS file are INPUT8 and OUTPUTS.

3.3 IDENTIFYING BOARDS

It is not possible to identify, in advance, the order in which a
particular PCl Subsystem will enumerate the PCI devices. This
means that it is not possible to be sure that the physical order of
Boards in a system is the same as the enumerated PCI order.

Page 8 127-1008 Blue Chip Technology Ltd.

Using the Product Page 9

The effect of thisisthat when there is more than one board of a
given type in the system it is not possible to relate the device
driver’s numbering scheme to the physical location of the
boards in the system. For any particular system, the order
remains the same providing the PCI subsystem (bridge chips
and BIOS) remain unchanged.

To provide application developers with a method for uniquely
identifying particular boards the following mechanism has been
provided:

1. Each of the PCI cards to which the drivers apply has a
unique serial number programmed into it and also attached
to the board on the write on label on the printed circuit
board. Thisseria number is used to positively identify one
of the PCI cards. This serial number is accessible by both the
device driver and the user.

2. The DLL provides afunction BCTGetBoardld that will open
aBoard by providing a board type and a board number (zero
based). An additional function is provided,
BCTFindSerialNo, that will search all the boards known to
the driver for one matching the serial number. The function
returns a suitable Board Identifier and Number for usein a
subsequent call to BCTGetBoardld. If the serial number
cannot be found or the driver is not loaded then an error is
returned.

Blue Chip Technology Ltd. 127-1008 Page 9

Page 10 Using the Product

3.4 APPLICATION DEVELOPMENT

No matter which development language is being used the steps
for developing an application is the same:

Allocate and initialise handles for each device being used
Create and initialise avalid board 1D structure

Initialise the directions of ports

Assign each handle to a port

Run required functions

Close all handles prior to terminating

SurwWhE

If we take as an example writing an application that uses the
two of the ports on the PCI_PIO (first 8255 ports A and B) one
(port A) for input and the second (port B) for output we would
need to use the following process

3.4.1 Determine the board IDs and handles required.

Aswe are only using 1 PCI data acquisition card we will need
only 1 board ID structure, however as we plan to use two ports
on the PCI_PIO we will need two handles. These can be
defined as.

/1 Define a board ID structure for the PC_PIO W
/1 don’t fill any of the data only reference it by
/1 nane.

BCT_BQOARD_I D nPCl Pl OBoar dl D

/1 Define two handl es one for input and one for
/1 out put

BCT_HANDLE nCut put Handl e;

BCT_HANDLE nl nput Handl e;

Page 10 127-1008 Blue Chip Technology Ltd.

Using the Product Page 11

3.4.2 Initialise the handles and board ID structure

Now we have declared the variables required for the board 1D
and the handles we need to make the appropriate calls to the
driver to get NT to complete the initialisation of the structures.
Each time we make a call to the driver we should check the
return code from the function and act as appropriate. In this
example the error checking is only shown for the first call to the
driver but all calls should be checked.

BCT_DWORD nSt at us;
char *sErr Txt;

/1l Get the board id structure conpleted by the
/1 driver

nSt at us = BCTGet Boar dl d(& PCl Pl OBoardl D, PCI _PIO 0);
if (nStatus != BCT_OK)

BCTErr 2Txt (nSt at us, sErrTxt);
printf(“Status: %\n”, sErrTxt);
return(nStatus);

}

/1 Get the handles initialised by the driver
nSt at us = BCTI ni t Handl e(& Qut put Handl e) ;

/1 Check nStatus returned

nSt at us = BCTI ni t Handl e(& nput Handl e) ;

/1 Check nStatus returned

3.4.3 Initialise the port directions in the 8255

We are using two ports on the first PIO (PO 0) these are port
A asinput and port B as output. If we were using both PIOs on
the PCI_PIO we would need to call BCTInit8255Modes twice,
once for each PIO.

Blue Chip Technology Ltd. 127-1008 Page 11

Page 12 Using the Product

/1 Init the 8255 using the board ID structure

/1 declared and initialised. 0 is PIOO, using
/1 MODE O, port Ais input, port B is output, port
/1 Cis NOCARE as not used.

nSt at us = BCTI ni t 8255Mbdes(&nPCl Pl OBoar dI D,
0, MODE 0, | NPUT, QUTPUT, NOCARE);
/'l Check nStatus returned

3.4.4 Assign each allocated handle to a port

Now that the 8255 has been set up we can assign each of the
handles to represent a specific port within the device.

/1 nlnputHandle is for port A

nSt at us = BCTQpen(&nl nput Handl e, &nPCl Pl OBoar dlI D,
BCT 8255, 0, BCT_PCRT_A);

/1 Check nStatus returned

/1 nQutputHandle is for port B

nSt at us = BCTQpen(&nQut put Handl e, &nPCl Pl OBoar dI D,
BCT 8255, 0, BCT_PCRT _B);

/1 Check nStatus returned

3.4.5 Using the ports

If al the initialisation detailed above has completed succesfully
we can use the handles to input and output values to and from
the PCI_PIO. Inthis example we are doing all the IO directly
from the application without using the pacer so we make calls
to the functions BCTReadPort and BCTWritePort. If we get a
status return of BCT_IO_PENDING thereisaready an 10
operation pending on the port we specified and we use
BCTWait to specify how long to wait for this previous 10
operation to complete.

Page 12 127-1008 Blue Chip Technology Ltd.

Using the Product Page 13

/!l Variable to store result
BCT_BYTE nVal ;
char *sErrTxt;

/1l To read a port...

nSt at us = BCTReadPort (&nl nput Handl e, &nVal);
if (nStatus == BCT_| O PENDI NG

{

}
if ((nStatus !'= BCT_OK) && (nStatus !=

BCT_| O_PENDI NG))
{

nSt at us = BCTWAi t (&nl nput Handl e, | NFI NI TE);

BCTErr 2Txt (nSt at us, sErrTxt);
printf(“Status: %\n", sErrTxt);
return(nStatus);

}

/1l To wite a port...

nStatus = BCTWitePort (&Qut put Handl e, 0x55);
if (nStatus == BCT_| O_PENDI NG

{

}
if ((nStatus !'= BCT_OK) && (nStatus !=

BCT_| O_PENDI NG))
{

nSt at us = BCTWai t (&nCQut put Handl e, | NFI NI TE);

BCTErr 2Txt (nSt at us, sErrTxt);
printf(“Status: %\n", sErrTxt);
return(nStatus);

Blue Chip Technology Ltd. 127-1008 Page 13

Page 14 Using the Product

3.4.6 Closing all open handles

When the application is to be terminated we must close al open
handles and release the board id structure.

/1 Close the handl es

nSt at us = BCTd ose(&l nput Handl e) ;

/'l Check nStatus returned

nSt at us = BCTA ose(& Qut put Handl e) ;

// Check nStatus returned

nSt at us = BCTRel easeBoar dl d(& PCl Pl OBoar dl d) ;
/'l Check nStatus returned

When all the open handles have been closed and all board ID
structures released it is safe to terminate the application. If
these close calls are not made the handles will remain allocated
and may result in strange behaviour of Windows.

3.5 ASYNCHRONOUS OPERATION

Many of the functions provided are asynchronous using the
standard Win32 OVERLAPPED operations. This means that an
operation could return with a status of BCT_IO_PENDING. If
this occurs then befor e using any functions that will access the
same device it isimper ative that the application waits until the
operation has finished. This can be achieved by using the
BCTWait function which alows atime from Omsto INFINITE
to be specified for how long the function will wait for the I/O to
complete. If the operation is not complete it will again return
BCT_1O_PENDING. This permits the application to continue
processing and periodically test for whether 1/0 is complete OR
to block and wait until the I/O is complete before proceeding
any further.

Page 14 127-1008 Blue Chip Technology Ltd.

Using the Product Page 15

3.6 USING THE COUNTER TIMERS

The Counter Timers available on the PCI_PIO, PCI_DIO and
PCI_ADC can be used in a number of ways. They are dways
programmed to use 16-bit counters. The following options are
available:

1. When pacing (one of the timers free running to give a
periodic interrupt), counters O and 1 are reserved to control
the pacing functions. As one pacer can control functions on
devices on multiple boards, this would leave counter O and 1
free on any other available boards in the system.

Blue Chip Technology Ltd. 127-1008 Page 15

Page 16 Using the Product

2.

When pacing analogue input on the PCI_ADC, counter 2 is
used. Thismust be the counter 2 on the ADC board (unlike
the case with the generic pacing clock)

A particular counter (if available) can be programmed to
count external events. Most of the counters allow 2 external
pinsto be connected and either of these can be used to
clock the relevant counter — see the BCTProgramCounter
function.

Any of the counters can be read so long as the program has
avalid handle for the relevant device. In general this means
that the pacing clocks cannot be read whilst they are being
used for pacing as these are owned by the library and not by
the application. The counter will have been started using
BCTProgramCounter. Asit isinitially programmed with
Offff,6, counts down to O then wraps back to Offff;e, any use
of the counter will have to take account of the fact that the
counter counts down. As the counters are 16-bit values they
are read using the BCTReadPort16 function.

Note: The counters do not actually load their starting value
Offff16 until they receive the first clock input, this means that any
value read from the counter before it has started counting
returns an undefined value.

3.7

PACING

In order to support transfer of blocks of data under control of
the Counter/Timers (8254s) on the PCI_PIO, PCI_DIO and
PCI_ADC boards, a number of pacer functions are provided.
The following limitations will be placed on the hardware by the
driver:

Page 16 127-1008 Blue Chip Technology Ltd.

Using the Product Page 17

1.

Clock 0 and 1 will always be cascaded together to give a
total of 32bits for the Counter/Timer value

The input to this will always be the on board oscillator —
4MHz

The minimum time between 1/0s is 1ms, the maximum is
that achievable with 32 Bits and a clock rate of 4AMHz
(approximately 17.89 minutes).

To use pacer input / output the following sequence of events
needs to take place:

1.

2.

Acquire the Pacer Clocks

Specify the operation to be synchronised with the Pacer
Clock, this step should be repeated for as many operations as
are required

Start the Pacer operation, specifying the time between 1/0s
in milliseconds

At the end, stop pacer - thiswill complete all the outstanding
operations tied to the pacer and it will be necessary to return
to step 1.

Each step must be carried out in sequence otherwise the
routines will report an error reflecting the missed step.

Blue Chip Technology Ltd. 127-1008 Page 17

Page 18 Using the Product

Some of the Pacing Functions support double buffering where it
is possible to have the Driver Reading/Writing to/from one
buffer whilst the application is processing the other buffer. In
order to support this, ALL data buffers passed to the pacer
functions contain not only the actual buffer for the data but also
a semaphore used to synchronise the use of the buffers.

These buffers, declared astype BCT_BUFFER, must be
initialised and released using the BCTAllocate and BCTRelease
functions which are similar in use to the standard C *“ mdloc”
and “free” functions.

If a buffer has been declared as follows:

BCT_BUFFER pBuf ;
Then to access the actual data use

pBuf . Buf f er , which is declared asan array of BCT_BYTE. To
access the semaphore use pBuf . Sema, whichis declared as a
32-hit unsigned word (BCT_DWORD).

In use the semaphore should be initialised to zero before calling
the driver. The driver will use the first buffer, set its semaphore
to non zero and switch to the other buffer. Each time the driver
switches buffers it will set the semaphore for that buffer to a
non zero value.

An application program should test the semaphore and only
process the buffer when it has a non zero semaphore value and
set the semaphore back to zero when it has finished processing
it.

Page 18 127-1008 Blue Chip Technology Ltd.

Using the Product Page 19

The pacing functions allow a single Pacer clock to be used to
trigger multiple events. Note the following:

1. Thedriver will process each event in turn as the pacer
interrupt occurs, the first to be processed will be the first
added to the event list. If there are too many operations
added to the pacer clock then it is possible that they will not
be finished before the next pacer interrupt occurs. If this
happens then that pacer interrupt will be ignored however,
the currently active 1/O will continue until the event list is
completed.

2. The Pacer Clock does not need to be on the same board as
the devices being paced.

3. Some of the functions are continuous, these will only be
removed from the pacer queue when their associated device
is closed or the Pacer isreleased. Releasing the Pacer Clock
stops ALL of the activity paced on that clock, whereas
closing the device only stops pacing for that particular
device.

To alow different operations on the same pacer to run at
different rates, an additional operation is supported where the
number of Pacer interrupts to be ignored before carrying out the
operation can be specified. For example a value of 0 means
carry out the operation on every pacer interrupt. A value of 5
means ignore 5 pacer interrupts and carry out the operation on
every 6"interrupt.

Paced input from analogue inputs on the PCI_ADC is handled
dightly differently to that for the other devices.

Blue Chip Technology Ltd. 127-1008 Page 19

Page 20 Using the Product

1. It uses only Counter/Timer 2

2. Only asingle block of data can be captured (up to 4Gbytesin
Sze!)

3. Captureiseither “as quick as possible — as in Software,
Level Triggered or Paced — driven by the output of
Counter/Timer 2.

4. Inthe same way as the standard Pacer, if you are using a
Counter/Timer it must be first “ Acquired” and then
“Released”

3.8 USING DIGITAL INPUT AND OUTPUT
3.8.1 Ports Aand B

The 8255 devices on the PCI_PIO and PCI_ADC have three
portsthat can be configured for input or output and in the case
of port C the bits can be split between input and output.

Ports A and B are each configured as a single byte wide port
either al asinput or all as output in 8255 mode 0 operation.
This configuration must be done before calls are made to write
or read to the port using BCTInit8255Modes.

Page 20 127-1008 Blue Chip Technology Ltd.

Using the Product Page 21

3.8.2 Split Port C

The 8255 devices on the PCI_PIO and the PCI_ADC have a
Port C that can be programmed so that the low 4 bits and high 4
bits are used for Input or Output independently. Thisis
controlled by the BCTInit8255M odes function, specifying ININ
for 8 bit input, OUTOUT for 8 bit output and INOUT or

OUTIN for split mode operation.

Apart from initial set up port Cis used in the same way asthe
other two ports (A and B). When using the Bit Setting function
BCTWriteBit, thiswill reject attempts to write to a bit set to
input. When using any of the Input or Output functions,
BCTWritePort, BCTReadPort or BCTAddPacerBlocklo, these
will read or write 8 bit values. If the Port is “split” then,

On output all 8 bits will be written to Port C but only the
appropriate half of the byte will actually be placed on the
output pins by the device

On Input all 8 bits will be read from Port C, but only the
appropriate half of the byte will contain valid information,
the other half is undefined and no assumption should be
made asto its contents,

So, although the Port can be split into two 4 bit halves all
access to the port is made using 8-bit values and care should be
taken that the data of interest isin the correct half of the 8 bit
value read or written.

Blue Chip Technology Ltd. 127-1008 Page 21

Page 22 Using the Product

3.9 WATCHDOG TIMER

The PCI_WDT board operates in a different manner to the
other boards supported by the driver. Aswith the other boards
intherange, it isidentified using aBCT_BOARD_ID and a
handle is obtained using the BCTOpen function. The main
differenceis that al the functionality on the board is accessed as
asingle device.

This implementation does not support interrupts and the
functionality is limited to:

Reading and Writing the System Monitor Registers — see
BCTSetWdt and BCTReadW(dt.

The datathat can be written is defined in the
BCT_WDT_SETDATA data structure, the data that can be
read is defined in the BCT_WDT_READDATA data
structure, see data structure definitions is appendix A.

Control Operations on the Watchdog are al carried out
using the BCTWatchdog function.

The Monitor chip on the PCI_WDT does not support fast
access and so the BCT SetWdt and BCTReadW(dt routines will
reject access less than 2 seconds apart. 1f you are monitoring
using aloop of some sort, ensure that the routines are called at
more than 2 second intervals.

Page 22 127-1008 Blue Chip Technology Ltd.

Page 24 Diver API Functions

4.0 DRIVER API FUNCTIONS

In order to take away the complexity of the Windows NT™
kernel mode device driver interface the drivers are supplied with
an accompanying 32bit DLL which provides a number of library
functions for interfacing to the drivers. All of these functions
return an error code as detailed in the ‘Error Codes' section of
this manual and these should be checked when callsto the
library have been made.

The behaviour of the DLL and driver is neither predictable nor
supportable if error codes returned from API routines are
ignored.

The error codes are detailed in alater section of this manual
however it is recommended that the routine BCTErr2Txt() is
used to trandate error codes into their appropriate text formsin
order for them to be displayed on the screen.

Page 24 127-1008 Blue Chip Technology Ltd.

Driver API Functions Page 25

4.1

Function Overview

The library contains functions which can be divided into the

following categories:

M anagement:

Digital Functions:

Analogue Functions:

BCTAcquireAPacer
BCTAIllocate
BCTClose
BCTErr2Txt
BCTFindSeriaNo
BCTGetBoardid
BCTInitHandle
BCTInitPacer
BCTOpen
BCTReease
BCTReleaseAPacer
BCTReeaseBoardld
BCTWait

BCTInit8255Modes
BCTInitIsoDigModes
BCTReadPort
BCTReadPort16
BCTWriteBit
BCTWritePort
BCTWritePort16

BCTAutoCalAin
BCTInitAOutModes
BCTReadBlockAin
BCTReadPortAin

Blue Chip Technology Ltd.

127-1008 Page 25

Page 26 Diver API Functions

Counter Functions: BCTProgramCounter

Pacer Functions: BCTAddPacerBlockl O
BCTAddPacerFunction
BCT StartPacer
BCT StopPacer

Watchdog functions: BCTReadWdt

BCT SetWdt
BCTWatchdog

4.2 Function Descriptions

The function prototypes are given below in C notation, using
“Hungarian” type prefixes on variable names. Thisis consistent
with the format used by Microsoft in their Windows
programming manuals.

4.2.1 Management Functions

BCTAcquireAPacer

nError BCTAcquireAPacer (BCT_BOARD | D
*pBoar dl d) ;

pBoardid | dentifier returned from BCTGetBoardld

Attempts to gain access to Counter/Timer 2 on the
board specified. If it fails an error will be returned

Page 26 127-1008 Blue Chip Technology Ltd.

Driver AP| Functions Page 27

BCTAllocate

BCT_DWORD BCTAI | ocat e(PBCT_BUFFER pBct Buf,
ULONG Lengt h)

pBctBuf The address of a buffer structure
Length How many bytes to allocate

Thisroutine is used to alocate the requested amount of
memory and store a pointer to the buffer in the
structure. This structure also contains the semaphore
used to manage Double Buffering. All Buffers passed to
the APl must be encapsulated inaBCT_BUFFER
structure.

BCTClose

nError BCTO ose(PBCT_HANDLE pHandl e)
pHandle A BCT specific handle for the board

Releases any resources associated with the device when
it was opened

Blue Chip Technology Ltd. 127-1008 Page 27

Page 28 Diver API Functions

BCTEm2Txt
voi d BCTErr 2Txt (BCT_DWORD nCode, char
*| panTxt)
nCode An error code returned from any of the
BCT library routines
[panTxt A pointer to an areato copy an ASCII

version of the Error Code into.
This function converts the error code returned by the

DLL functionsinto the equivalent text string. These
errors are defined in the chapter on error codes.

BCTFindSerialNo

nError BCTFi ndSeri al No(BCT_DWORD nSeri al
BCT_BQOARDTYPE
*nBoar dType,
BCT_WORD * pBoar d)

nSerial The unique serial number of the board to
be identified

pBoardType Address of avariable for the return of the
unigque identifier for the board type:
PCI_PIO, PCI_DIO, PCI_ADC,
PCl_WDT

pBoard Address of avariable for the return of the
driver derived board number of this
particular type of board, starting from
zero.

Page 28 127-1008 Blue Chip Technology Ltd.

Driver API Functions Page 29

This function will scan al boards identified by the
system during start-up. If it finds a Board with a
matching serial number then it will return a BoardType
and BoardNumber suitable for use in a subsequent call
to BCTGetBoardld.

Thisroutine is typicaly only used in those circumstances
where more than one board of a given type will be
installed in the system. The exact mechanism by which
the serial numbers are provided to the application is
implementation dependent. It could, for example, be
achieved using the Registry, an initialisation file or even
as a parameter on the command line to a program.

BCTGetBoardld

nError BCTCet Boar dl d(PBCT_BQOARD | D pBoardl d,
BCT_BQOARDTYPE
nBoar dType, BCT_WORD nBoar d)

pBoardid A validated descriptor for usein
subsequent operations on this board

nBoardType Unique identifier for the board type:
PCI_PIO, PCI_DIO, PCI_ADC,
PCI_WDT

nBoard Which board of a particular type starting
fromO

Blue Chip Technology Ltd. 127-1008 Page 29

Page 30 Diver API Functions

This function will validate the nBoardType and board
number, make sure that such a device is present on the
system and return a Handle for use in addressing the
board.

This handle cannot be used for any 1/0 but simply
identifies the board. See the comments in the section on
identifying boards for the limitations in associating the
Driver Based Board Number with the physical order of
boards of the same type in any particular system.

BCTInitHandle

nError BCTI ni t Handl e(PBCT_HANDLE pHandl e)
pHandle A BCT specific handle for the board

This must be used to initialise a device handle before
use, for example:

BCT_HANDLE handl e,
BCTI ni t Handl e(&andl e) ;

Page 30 127-1008 Blue Chip Technology Ltd.

Driver API Functions Page 31

BCTInitPacer

nError BCTI nit Pacer (PBCT_BQARD | D pBoardl d)
pBoardid | dentifier returned from BCTGetBoardld

Thiswill implicitly open the two clock devicesto ensure
they are available and prevent use by other parts of the
application, they will be released when BCT StopPacer is
called.

BCTOpen

nError BCTOpen(PBCT_HANDLE pHandl e,
PBCT_BQARD_| D pBoardl d,
BCT_DEVI CETYPE nDevType,
BCT_WORD nDev
BCT_PORTTYPE nPort)

pHandle A BCT specific handle for the device
returned by an implicit use of the
CreateFile function

pBoardld | dentifier returned from
BCTGetBoardld, used to identify on
which Board the device islocated

nDevType Specifiesan individual device type:

BCT_8255, A digital I/0 chip
BCT_8254, A counter timer chip
BCT_ISODIG, Isolated Digital 1/0
BCT_AIN, Analogue Input
BCT_AOUT Anaogue Output

Blue Chip Technology Ltd. 127-1008 Page 31

Page 32

Diver API Functions

nDev

nPort

Specifies which device on the Board is
being addressed. It is a zero based
number, for example, there are two 8255
deviceson aPCl_PIO board these are
numbered 0 and 1.

Specifies an individual port within the
device, this can either be done using an
integer, or one of the constants provided.
All ports/ channels are numbered in zero
based sequence, 0, 1, 2, The
following constants allow a more clearer
description:

BCT_PORT_A, Port A onan 8255
BCT_PORT_B, Port B onan 8255
BCT_PORT_C, Port Conan 8255

BCT_CLK_O, Counter 0 on an 8254
BCT_CLK 1, Counter 1 on an 8254
BCT_CLK 2, Counter 2 on an 8254

ISO_DIG_LOWS, Low 8-hitsof 1/0 on
aPCl_DIO

ISO_DIG_HIGHS, High 8-bits of 1/0
onaPCl_DIO

ISO_DIG_ALL16, 16 bitsof /O ona
PCl_DIO

Page 32

127-1008 Blue Chip Technology Ltd.

Driver API Functions Page 33

BCT_CHAN_O, Anaogue Out,
Channel 0
BCT_CHAN_1, Anaogue Out,
Channel 1
BCT_CHAN_2, Anaogue Out,
Channel 2
BCT_CHAN_3 Anaogue Out,
Channel 3

BCTRelease
BCT_DWORD BCTRel ease(PBCT_BUFFER pBct Buf)
pBctBuf The address of a buffer structure
Release the memory allocated to the buffer in the

BCT_BUFFER structure, note this does NOT release
the structure only the buffer memory allocated to it.

BCTReleaseAPacer

nError BCTRel easeAPacer (BCT_BQOARD | D
*pBoar dl d) ;

pBoardid | dentifier returned from BCTGetBoardld

Release the Counter Timer 2 acquired by
BCTAcquireAPacer()

Blue Chip Technology Ltd. 127-1008 Page 33

Page 34

Diver API Functions

BCTReleaseBoardld

nError BCTRel easeBoar dl d(PBCT_BOARD | D
pBoar dl d)

pBoardid | dentifier returned from BCTGetBoardld

This function will release any resources reserved by the
call to BCTGetBoardld.

BCTWait

nError BCTWi t (PBCT_HANDLE pHandl e,
BCT_DWORD nDel ay)

pHandle A BCT specific handle for the board

nDelay Time in milliseconds to wait for an I/O
operation to complete.

This function is used to wait for any operation that
returns BCT_IO_PENDING. If the routine times out
before the I/O is complete it will return
BCT_|O_PENDING.

The constant O for atime-out just tests whether the 1/0
is complete, avalue of INFINITE will not return until
the I/O is complete, any value in-between is possible.

Page 34

127-1008 Blue Chip Technology Ltd.

Driver API Functions Page 35

4.2.2 Digital Functions

BCTInit8255Modes

nError BCTI ni t 8255Mbdes(

pBoardid

nDev

nMode

nPortA

PBCT_BQARD_| D pBoardl d,
BCT_WORD nDev,
BCT_8255_MODES nhbde,
BCT_DI RECTI ONS nPort A,
BCT_DI RECTI ONS nPort B,
BCT_DI RECTI ONS nPort C)

| dentifier returned from BCTGetBoardld

Specifies which of the 8255's on the
board to access—eg. 0, 1, ...

Specifies the mode of operation for the
8255, defined as one of the following:

MODE_O - PIO port isin mode 0

Specifies the direction of the port A
within the PIO

INPUT Port isinput
OUTPUT Port is output
NOCARE Port isnot used

Blue Chip Technology Ltd.

127-1008 Page 35

Page 36 Diver API Functions

nPortB Specifies the direction of the port B
within the PIO

INPUT Port isinput
OUTPUT Port is output
NOCARE Port isnot used

nPortC Specifies the direction of the port C
within the PIO
ININ Port isall input

OUTOUT Port isall output

INOUT Upper nibble is input,
lower output

OUTIN Upper nibble is output,
lower input

NOCARE Port isnot used

Each 8255 needs to be initialised to set up the mode,
port direction, etc. If al six 8255 ports are required on
aPCl_PIO then two calls need to be made to the
BCTInit8255Modes function, once for the first 8255 (0)
and once for second 8255 (1).

Note: This function is used to initialise the 8255 on ALL
the boards, i.e. both the 8255's on a PCI_PIO and the
single 8255 on a PClI_ADC.

Page 36 127-1008 Blue Chip Technology Ltd.

Driver API Functions Page 37

BCTInitlsoDigModes

nError BCTInitlsoD ghvodes(
PBCT_BOARD_| D pBoardl d,
BCT_WORD nDev,
BCT_8255_MODES nMbde,
BCT_DI RECTI ONS nPort A,
BCT_DI RECTI ONS nPort B,
BCT_DI RECTI ONS nPort C)

This function is used to initialise the isolated digital
portson aPCl_DIO card.

Although the PCI_DIO has fixed inputs and outputs the
driver needs to be initialised as though it were an 8255
onaPCl_PIO. Thismeansthat a PCl_PIO could be
changed for a PCl_DIO with minimal code changes.
This conceptual view of the PCI_DIO requiresthe
following parametersto the BCTInitlsoDigModes
function call.

pBoardid | dentifier returned from BCTGetBoardld

nDev Specifies which of the isolated digital
inputs or outputsisto beinitialised. This
should always be 0.

nMode Specifies the mode of operation for the
PCI_DIO. This should always be set as
MODE_0.

Blue Chip Technology Ltd. 127-1008 Page 37

Page 38

Diver API Functions

nPortA

nPortB

nPortC

Specifies the direction of the port A
withinthe DIO. Port A isthe lowest 8
bits of the DIO.

INPUT Port isinput
OUTPUT Port isoutput

BIDI Port isin and output
NOCARE Port isnot used

Specifies the direction of the port B
within the DIO. Port B isthe upper 8
bits of the DIO.

INPUT Port isinput
OUTPUT Port isoutput

BIDI Port isin and output
NOCARE Port isnot used

Specifies the direction of the port C
within the DIO. Port C is used to access
all 16 bits of the DIO.

INPUT Port isinput
OUTPUT Port isoutput

BIDI Port isin and output
NOCARE Port isnot used

Page 38

127-1008 Blue Chip Technology Ltd.

Driver API Functions Page 39

BCTReadPort

nError BCTReadPort (PBCT_HANDLE pHandl e,
BCT_BYTE *pVal)

pHandle A BCT specific handle for the board

pva A pointer to avariable to store the data
returned from the port.

This routine can be used to read an 8-bit value from any
device that supports 8-hit reads.

BCTReadPortl6

nError BCTReadPort 16(PBCT_HANDLE pHandl e,
BCT_WORD *pVal)

pHandle A BCT specific handle for the board

pva A pointer to avariable to store the data
returned from the port.

This routine can be used to read a 16-bit value from any
device that supports 16-bit reads.

Blue Chip Technology Ltd. 127-1008 Page 39

Page 40

Diver API Functions

BCTWriteBit

nError BCTWiteBit(PBCT_HANDLE pHandl e,
BCT_BYTE nBit,
BCT_BYTE nVal)

pHandle A BCT specific handle for the board
nBit Specified the bit within the port (0 - 7)
nval The value to be written to the port
This function can be used on any device that supports

setting of individua bits, for example Port C on an 8255
or the Isolated Digital Output on a PCl_DIO.

BCTWritePort

nError BCTWitePort (PBCT_HANDLE pHandl e,
BCT_BYTE nVal)

pHandle A BCT specific handle for the board
nval The value to be written to the port

This routine can be used to write an 8-bit value from any
device that supports 8-hit writes.

Page 40

127-1008 Blue Chip Technology Ltd.

Driver AP| Functions Page 41

BCTW ritePort16

nError BCTWitePort 16(PBCT_HANDLE pHandl e,
BCT_WORD nVal)

pHandle A BCT specific handle for the board
nval The value to be written to the port

This routine can be used to write a 16-bit value from
any device that supports 16-bit writes.

Blue Chip Technology Ltd. 127-1008 Page 41

Page 42 Diver API Functions

4.2.3 Analogue Functions

BCTAutoCalAin

nError BCTAut oCal Ai n(PBCT_HANDLE pHandl e,
BCT_BYTE Gai n,
BCT_WORD *| pnMeanZer o,
BCT_WORD *| pnMeanFsd) ;

pHandle A BCT specific handle for the board

nGain The gain at which the Calibration isto be
carried out,

PCIADC_AIN_GAIN_1 for gainof 1
PCIADC_AIN_GAIN_10 for gainof 10
PCIADC_AIN_GAIN_100 for gain of 100
PCIADC_AIN_GAIN_1000for gain of 1000

IpnMeanZero a pointer to return the calculated Mean
Zero Vaue

IpnMeanFsd a pointer to return the calculated 90%
Full Scale Value

This routine will take 10 samples at the chosen gain with
the input set to 0 Volts and return the average value. It
will take 10 samples at a gain of 1 with the input value
set at 4.0 Volts (80% FSD) and return the average.

Note the MeanFsd value is ALWAY S calculated at a
gain of 1. These values allow the sampled data to bere-
calibrated. The calibration should be carried out at the
same gain setting as the samples.

Page 42 127-1008 Blue Chip Technology Ltd.

Driver API Functions Page 43

BCTInitAOutModes

nError BCTI ni t AQut Modes(

pBoardid

nDev

nChan0

nChanl

nChan2

PBCT_BQARD_| D pBoardl d,
BCT_WORD nDev,
BCT_WORD nChanO,
BCT_WORD nChanl,
BCT_WORD nChan2,
BCT_WORD nChan3);

| dentifier returned from
BCTGetBoardld, currently only the
PCI_ADC has an Analogue Out device

Specifies which of the analogue Out
devicesto use. The PCI_ADC is
considered to have 1 device with 4
channels, so thisistypically O

Specifies the whether channel O provides
voltage current outputs,

BCT_AOUT _VOLTAGE or
BCT_AOUT_CURRENT

Specifies the whether channel 1 provides
voltage or current outputs,
BCT_AOUT_VOLTAGE or
BCT_AOUT_CURRENT

Specifies the whether channel 2 provides
voltage or current driven,
BCT_AOUT_VOLTAGE or
BCT_AOUT_CURRENT

Blue Chip Technology Ltd.

127-1008 Page 43

Page 44

Diver API Functions

nChan3 Specifies the whether channel 3 provides
voltage or current driven,
BCT_AOUT _VOLTAGE or
BCT_AOUT_CURRENT

Thisroutine is used to initialise each of the four channels
to asuitable state. Each of the four analogue output
channels can provide constant voltage or current
outputs.

Note, all four channels are initialised in asingle call to
the routine

BCTReadBlockAin

nError BCTReadBl ockAi n(
BCT_BQOARD_I D *pBoardl d,
PBCT_HANDLE pHandl e,
BCT_BYTE nChan,
BCT_BYTE nGai n,
BCT_BYTE nMode,
PBCT_BUFFER pBuf fer,
BCT_DWORD nSanpl es,
BCT_WORD nTi ne) ;

pBoardid | dentifier returned from BCTGetBoardld

pHandle A BCT specific handle for the device

nChan The channel to be read, 0-15 for single
ended and O-7 for differentia inputs. If

reading from multiple channels then this
is the maximum channel number to read

Page 44

127-1008 Blue Chip Technology Ltd.

Driver API Functions Page 45

nGan

nMode

pBuffer

nSamples

The gain at which the values are to be
read,

PCIADC_AIN_GAIN_1 for gainof 1
PCIADC_AIN_GAIN_10 for gainof 10
PCIADC_AIN_GAIN_100 for gain of 100
PCIADC_AIN_GAIN_1000for gain of 1000

whether using single ended or differential
inputs and whether to collect from a
single channel or multiple channels

PCIADC_AIN_MODE_SINGLE,
PCIADC_AIN_MODE_DIFFERENTIAL or
PCIADC_AIN_AUTOSEL for multi. ports

If more than one option is being used
they should be “bitwise or’d” together.

e.g.

PCl ADC_AI N_MODE_Di FFERENTI AL |
PCI ADC_Al N_AUTOSEL

Where the data should be returned, see
the comments on using BCT_BUFFER,
only the data buffer itself is used, the
semaphore is ignored.

Number of samplesto be collected. Note
each sample isreturned as a 16 bit word.
The buffer should be allocated with twice
as many bytes as samples

Blue Chip Technology Ltd.

127-1008 Page 45

Page 46 Diver API Functions

nTime Time in microseconds between samples.
A value of 0 means collect the data as
fast asit can be converted.

Thisroutine is used to perform paced inputs from the
analogue to digital converter on the PCI_ADC. It alows
either rapid collection or paced collection as described
above.

If atimer of O is specified then using multiple channels
will not be permitted as it does not allow sufficient
settling time as each channel is switched to the
converter.

If anon-zero time is specified it will be checked to
ensure that it allows sufficient settling time between
samples. The times used can be found in the Hardware
manual for the PClI_ADC board.

There is a maximum possible time between samples of
16,384 microseconds. If capture isrequired at a Slower
rate then the routine BCTReadPortAin should be used
repeatedly.

Page 46 127-1008 Blue Chip Technology Ltd.

Driver AP| Functions Page 47

BCTReadPortAin

nError BCTReadPort Ai n(PBCT_HANDLE pHandl e,
BCT_BYTE nChan,
BCT_BYTE nGai n,
BCT_BYTE nMode,
BCT_WORD *pVal)

pHandle A BCT specific handle for the board

nChan The channel to be read, 0-15 for single
ended and O-7 for differential inputs

nGain The gain at which the value is to be read,

PCIADC_AIN_GAIN_1 for gainof 1
PCIADC_AIN_GAIN_10 for gainof 10
PCIADC_AIN_GAIN_100 for gain of 100
PCIADC_AIN_GAIN_1000for gain of 1000

nMode whether using single ended or differential
inputs:

PCIADC_AIN_MODE_SINGLE or
PCIADC_AIN_MODE_DIFFERENTIAL

pva A pointer to avariable to store the data
returned from the port.

Thisroutine is used to read a 12-bit raw data value from
the Analogue In Channels on the PCI_ADC. The actual
value returned is 16-bits long, the upper 4-bits are the
channel number - see the PCI_ADC hardware manual
for further details.

Blue Chip Technology Ltd. 127-1008 Page 47

Page 48

Diver API Functions

4.2.4

Counter Functions

BCTProgramCounter

nError BCTProgranmCount er (PBCT_HANDLE pHandl e,
BCT_BYTE nSour ce)

pHandle A BCT specific handle for the board
nSource Which of the external counter inputs to
use:
BCT_EXTERN_COUNTER INPUT1
or
BCT_EXTERN_COUNTER_INPUT?2

This function programs a Counter Timer to Offff,s and
starts it counting down. It will count each time the
specified input goes low. The nSource parameter will
depend on which board isused. The relevant hardware
manual indicates what sources may be used as inputs to
the counter.

BCT_EXTERN_COUNTER_INPUT1 means the first
of the inputs, this will be the first external input entry in
the table of inputs for this counter. It is possible that a
particular board may not support external counter inputs
on all of the counters. For example, the PCI_ADC
board only supports external counter inputs on counters
1land 2.

It is also necessary to ensure that any conditions
imposed on the board where the Counter Input pin is
shared with another device are met. For example the
Counter Input pins on the PCI_PIO are shared with Port

Page 48

127-1008 Blue Chip Technology Ltd.

Driver API Functions Page 49

C on the 1% 8255 and Ports B and C on the 2™ 8255,
these must be set as inputsto avoid contention.

The relevant Hardware manual MUST be checked and
the necessary conditions met.

4.2.5 Pacer Functions

BCTAddPacerBlocklo

nError BCTAddPacer Bl ockl o(PBCT_HANDLE pHandl e,

pHandle

pBoardid

nOperation

PBCT_BOARD_I D

pBoardl d,

BCT_WORD nQperati on,
PBCT_BUFFER pBuffer1,
PBCT_BUFFER pBuf fer 2,
BCT_DWORD nByt es,
BCT_DWORD nCount)

A BCTspecific Handle identifying the
device to be used

| dentifier returned from
BCTGetBoardld() for the board with the
Pacer to be used. This may not be the
same as the board on which the device is
located.

BLOCK_SINGLE_READ
read single block and then complete 1/0.

BLOCK_DOUBLE_BUFFER_READ

I nitiate a continuous double buffered

read — see the section on double
buffering for how this affects applications
programs.

Blue Chip Technology Ltd.

127-1008 Page 49

Page 50

Diver API Functions

pBufferl

pBuffer2

nBytes

BLOCK_SINGLE WRITE Writea
single block and then complete the I/O.

BLOCK_DOUBLE BUFFER WRITE

I nitiate a continuous double buffered
write — see the section on double
buffering for how this affects applications
programs.

BLOCK_REPEATED WRITE

Write the same block continuously, going
back to the start of the block after the
last value is written.

The operations will be checked against
the current settings for that device and
rejected if they do not match - e.g. a
BLOCK_WRITE to aport set for input.

Pointer to buffer containing data and
semaphore, 1% buffer when double
buffering

Pointer to 2™ buffer containing data and
semaphore when double buffering,
ignored for single buffer transfers

Size of Buffer in Bytes - when double
buffering, both buffers are the same size

Page 50

127-1008 Blue Chip Technology Ltd.

Driver API Functions Page 51

nCount

Supported Devices

8255

ISODIG

The number of times the Pacer Clock
interrupt should be ignored before
carrying out the operations. A value of 0
means the operation takes place on every
pacer interrupt, 1 means skip interrupt,
operate on interrupt, skip interrupt,
operate on interrupt, ...

Adds a single operation to be carried out
by the driver every time the Pacer Clock
interrupts. This routine can be called
repeatedly before issuing

BCT StartPacer() in order to carry out
multiple functions on each Pacer
Interrupt. Any attempt to call it once the
pacer has started or before the Pacer
Clock has been initialised will return an
error.

All of the pacer block 1O functions are
supported on the 8255 (with the
exception that only 8 bit transfers are
supported on Port C)

All the functions are supported on the
PCI_DIO, Isolated I/O ports with the
exception of Port C (all 16 bits) whichis
not supported at all.

Blue Chip Technology Ltd.

127-1008 Page 51

Page 52

Diver API Functions

Analogue Out Only the BLOCK_SINGLE_WRITE and

Analogue In

BLOCK_CONTINUOUS WRITE
operations are supported on the
Analogue Out Channels on the
PCl_ADC.

None of the functions are supported on
the Analogue Input Channels on the
PCl_ADC (seethe separate Analogue
Input, Pacing functions.)

BCTAddPacerFunction

nError BCTAddPacer Functi on(PBCT_BOARD | D

pBoardid

nOperation

*pva

pBoardl d,

BCT_HANDLER

nQOper ati on, BCT_DWORD
*pVal)

| dentifier returned from BCTGetBoardld

Some simple operation code
READ_PACER reads the current pacer
interrupt count.

Return value from READ_PACER. If
*pVal > 0 then wait until *pVal pacer
interrupts have occurred before returning
the interrupt count.

Thisroutine is used to provide generic pacer functions
that can be described by an operation code and an
optional 32 bit pointer.

Page 52

127-1008 Blue Chip Technology Ltd.

Driver API Functions Page 53

BCT StartPacer

nError BCTStart Pacer (PBCT_BOARD | D pBoardl d,
BCT_DWORD nl nterval)

pBoardid | dentifier returned from BCTGetBoardld

ninterval Specifies the interval in milliseconds,
allowable values are 1 to 1,073,000, i.e.
maximum interval between samplesis
approximately 17.89 minutes.

The Onboard clock runs at 4MHz,

cascading two 16 bit counters together
gives the maximum time interval.

BCTStopPacer

nError BCTSt opPacer (PBCT_BQARD | D pBoardl d)
pBoardid | dentifier returned from BCTGetBoardld

Stops the appropriate Counter Timers and releases
(closes) the two clock devices opened by the
BCTInitPacerClock function. Any pacing operations till
outstanding will be terminated at thistime.

Blue Chip Technology Ltd. 127-1008 Page 53

Page 54 Diver API Functions

4.2.6 Watchdog timer functions

BCTReadWdt

BCT_DWORD BCTReadWt (PBCT_HANDLE pHandl e,
PBCT_WDT_READDATA pDat a)

pHandle A BCT specific handle for the device to

be used
pData Data returned from the watchdog timer
board
This function returns current data from the watchdog
timer board.
BCTSetWdt

BCT_DWORD BCTSet Wit (PBCT_HANDLE pHandl e,
PBCT_WDT_SETDATA pDat a)

pHandle A BCT specific handle for the device to
be used

pData Control Information to send to the
watchdog timer Board

This function sets the working parameters for the
watchdog timer board.

Page 54 127-1008 Blue Chip Technology Ltd.

Driver API Functions Page 55

BCTWatchdog

BCT_DWORD BCTWat chdog(PBCT_HANDLE pHandl e,
WATCHDOG_OPERATI ON
nActi on,

BCT_BYTE *pDat a)

pHandle A BCT specific handle for the device to
be used

nAction Watchdog Operation to carry out:
BCT_WD_WRITE_TIMEOUT
BCT_WD_REFRESH_TIMEOUT
BCT_WD_WRITE_ENABLE_MASK
BCT_WD _WRITE_OUTPUT_MASK

pData Pointer to Byte to read/write to the Watchdog

Blue Chip Technology Ltd. 127-1008 Page 55

Page 56 Event Log Messages

5.0 EVENT LOG MESSAGES

In the event of the driver failing to load when the system is
started up then a message will be logged into the Windows NT
event log. This can be viewed using the Event Log viewer
found on the administrative tools option on the start menu.

Detailed below are the most common messages and their
probable cause. If any other message is logged please call your
supplier for more information.

ExAllocPool for Resource List failed:

The non paged memory small istoo small for the amount of
memory the driver has requested. This can be overcome by
adding more system memory or by modifying the memory
allocation settings in the registry. NOTE: If making changes to
the registry then ensure that all registry files are backed up prior
to making changes.

Failed to detect any Supported Boards

The driver could not find any supported PCI data acquisition
cards when performing a sweep of PCl space. Ensure that the
boards are inserted correctly.

Too many Boards Found

The driver has found too many boards and has been unable to
create the controllers for them. There is a maximum of 10
boards that can be supported by the driver.

Page 56 127-1008 Blue Chip Technology Ltd.

Event Log Messages Page 57

NT Failed to assign the PCI resources for this card.

There is a conflict between the resources asked for by the board
and another driver inthe NT system. Usebc_probe and NT
diagnostic to resolve the conflict.

Failed to find the Base 1/0O Address for this Board.

The driver could not get a valid base address for the board.
Ensure that the boards are all inserted correctly and are being
allocated resources correctly.

Failed to find an IRQ for this board.

The driver could not get a valid hardware interrupt for the
board. Ensurethat the boards are all inserted correctly and are
being allocated resources correctly.

Failed to write to the PCI command register
There is a hardware problem with the PCI data acquisition card.
Please contact your supplier for further details.

Failed to find the expected number of I/O Base Address
Registers

The driver could not find the required number of base addresses
for the card installed. Ensure that the card is functioning
correctly.

5.1 ERROR CODES

All functions within the library (except BCTErr2Txt) return an
error code to give the status or result of the function call. Itis
imperative that the application program checks and acts upon
these error codes to ensure correct operation.

Each of the error codes and its text based representation are
detailed below with details of the cause of the error.

Blue Chip Technology Ltd. 127-1008 Page 57

Page 58 Event Log Messages

0-BCT_OK
Function call was successful.

1- BCTERR_BOARD_BUSY
Not used in thislibrary.

2- BCTERR_BOARD _NOT_REQUESTED
Not used in thislibrary.

3- BCTERR_BOARD_ALREADY_REQUESTED
Not used in thislibrary.

4 - BCTERR_NO_GLOBAL_MEMORY
Not used in thislibrary.

5- BCTERR_TOO_MANY_BOARDS
Not used in thislibrary.

6 - BCTERR_GAINS NOT_SUPPORTED
Not used in thislibrary.

7 - BCTERR _INVALID_GAIN_VALUE
The gain value specified in a call to BCTReadPortAin or
BCTReadBlockAin is not valid. Use the gain constants
defined in the header files.

8- BCTERR_NO_ANALOG_CHANNELS
Not used in thislibrary.

9- BCTERR_CHANNEL_NOT_ANALOG
Not used in thislibrary.

Page 58 127-1008 Blue Chip Technology Ltd.

Event Log Messages Page 59

10 - BCTERR_INVALID_RANGE
Not used in thislibrary.

11 - BCTERR_NO_ANALOG_INPUTS
Not used in thislibrary.

12 - BCTERR_CHANNEL_NOT_ANALOG_INPUT
Not used in thislibrary.

13- BCTERR_NULL_POINTER
A pointer that is required by a function within the driver
iISNULL. Check that the pointer has been initialised
correctly.

14 - BCTERR_NO_ANALOG_OUTPUTS
Not used in thislibrary.

15- BCTERR_CHAN_NOT_ANALOG_OUTPUT
Not used in thislibrary.

16 - BCTERR_VALUE_OUT_OF RANGE
Not used in thislibrary.

17 - BCTERR_ILLEGAL_NUM_CHANS
Not used in thislibrary.

18 - BCTERR_NO IRQ_AVAILABLE
Not used in thislibrary.

19 - BCTERR_ILLEGAL_CHANS IN_ARRAY
Not used in thislibrary.

Blue Chip Technology Ltd. 127-1008 Page 59

Page 60 Event Log Messages

20 - BCTERR_ILLEGAL_NUM_SCANS
Not used in thislibrary.

21- BCTERR_LOST_DATA_IN_ISR
Not used in thislibrary.

22 - BCTERR_ILLEGAL_FREQ
Not used in thislibrary.

23 - BCTERR_NO_PROG_DIGITAL
Not used in thislibrary.

24 - BCTERR_INVALID_CHARS
Not used in thislibrary.

25 - BCTERR_INVALID_NUM_CHARS
Not used in thislibrary.

26 - BCTERR_PORT_NOT_BIDIRECTIONAL
Not used in thislibrary.

27 - BCTERR_NOT_DIGITAL_INPUT
Not used in thislibrary.

28 - BCTERR_ILLEGAL_PORT
Not used in thislibrary.

29 - BCTERR_PORT_NOT_INPUT
Not used in thislibrary.

30- BCTERR _ILLEGAL_BIT
Not used in thislibrary.

Page 60 127-1008 Blue Chip Technology Ltd.

Event Log Messages Page 61

31 - BCTERR_NOT_DIGITAL_OUTPUT
Not used in thislibrary.

32 - BCTERR_ILLEGAL_DIGOUT_VALUE
Not used in thislibrary.

33- BCTERR_PORT_NOT _OUTPUT
Not used in thislibrary.

34 - BCTERR_NO_COUNTERS
Not used in thislibrary.

35- BCTERR_INVALID_COUNTER
A counter specified in acall to BCTProgramCounter is
invalid. Check that the counter being requested is
supported by the board being used.

36 - BCTERR_INVALID_REF FREQ
Not used in thislibrary.

37 - BCTERR_INVALID_OUTPUT_FREQ
Not used in thislibrary.

38 - BCTERR_NOT_WATCHDOG
Not used in thislibrary.

39 - BCTERR_UNRECOGNISED _BOARD
The board type requested is not valid. Check that the
board type being used isin the valid list in the header
files.

40 - BCTERR_INVALID_BASEADDR
Not used in thislibrary.

Blue Chip Technology Ltd. 127-1008 Page 61

Page 62 Event Log Messages

41 - BCTERR_INVALID_IRQ
Not used in thislibrary.

42 - BCTERR_INVALID_DMACHAN
Not used in thislibrary.

43 - BCTERR_NO_DATA
Not used in thislibrary.

44 - BCTERR_STILL_ACQUIRING
Not used in thislibrary.

45 - BCTERR_NO_DMA_AVAILABLE
Not used in thislibrary.

46 - BCTERR_DMA_IN_USE
Not used in thislibrary.

47 - BCTERR_BUFFER _TOO_SMALL
The buffer size being specified in pacer functionsis too
small. Check the size of the buffer being requested and
increase as necessary.

48 - BCTERR _INVALID_MODE_VALUE
The mode specified for analogue channels is not valid.
Check that the mode (single ended or differential) is
specified using one of the constants defined in the
header file.

49 - BCTERR_HARDWARE_MISSING
Not used in thislibrary.

Page 62 127-1008 Blue Chip Technology Ltd.

Event Log Messages Page 63

50 - BCTERR_UNSUPPORTED_OS
The library found that the current operating system is
not supported by the driver. The operating system
should be Windows NT™ v4.0.

51 - BCTERR _GETSERIALNO_FAILED
The driver failed to obtain the serial number from the
hardware.

52 - BCTERR FAILED RELEASEBOARDID
The call to BCTReleaseBoard|d failed.

53 - BCTERR INVALID_SERIALNO
The serial number specified in acall to
BCTFindSerialNo has not been found. Check that the
serial number specified is one of the boards in the
system by checking the number written on the PCB.

54 - BCTERR_UNRECOGNISED DEVICECODE
The device code specified in acall to BCTOpen is not
valid. Ensure that the code being used is from the valid
list in the header file.

55 - BCTERR_UNRECOGNISED PORTCODE
The port code specified in the call to BCTOpen is not
valid for the device type being opened. Ensure that the
port code being used is from the valid list in the header
file and is supported by the device being opened.

56 - BCTERR_UNRECOGNISED _DEVICE
The device specified in a call to BCTOpen is not valid.

Blue Chip Technology Ltd. 127-1008 Page 63

Page 64 Event Log Messages

57 - BCTERR _FAILEDCLOSE
The driver failed to close the handle specified in acall to
BCTClose. Check that the handle is valid.

58 - BCTERR_READPORT_FAILED
The driver failed to read from a port. Check that the
devices have been initialised correctly, that the handles
are correct i.e. not reading from a handle assigned to an
output port.

59 - BCTERR_WRITEPORT_FAILED
The driver failed to write to aport. Check that the
devices have been initialised correctly, that the handles
are correct i.e. not writing to a handle assigned to an
input port.

60 - BCTERR _INIT8255MODES FAILED
The driver failed to initialise the 8255 ports. Check that
the handles and board id’ s passed to the
BCTInit8255Modes call are correct

61 - BCTERR _NTDRIVER DEVICESOUTOFORDER
Driver internal fatal error. The driver and / or hardware
encountered an un-resolvable problem. Check all
hardware is valid and restart system.

62 - BCTERR_DEVICECODENOTFOUND
The driver can not find the specified device. Check that
the device specified is valid and is present on the
installed hardware.

Page 64 127-1008 Blue Chip Technology Ltd.

Event Log Messages Page 65

63 - BCTERR _DEVICEOPEN
The device specified in aBCTOpen call is aready open
and in use by another process or part of the application.
Check that the device being opened is correct or close
down the other process.

64 - BCTERR_INVALID8255MODE
A mode specified for the 8255 is not valid. Check that
the mode specified is valid for an 8255.

65 - BCTERR_INVALIDIODIR
The direction specified for an 1/0O operation is not valid.
|.e. writing to an input port or reading from and output
port. Check the port directions specified and that the
handles used for reading and writing are correct.

66 - BCTERR _INVALID BITNO
The bit specified to the BCTWriteBit function is not
valid. Check the number of bits available on the port
and ensure that the number specified in the write bit call
isvalid.

67 - BCTERR INVALID BITSET
The value specified for the bit is not valid. Ensure that
thevaueis‘0 or ‘1.

68 - BCTERR WRITEBIT_FAILED
The call to BCTWriteBit failed. Check that the handle
and board ID structure for the board are correct and
that the call isto an output not an input port

Blue Chip Technology Ltd. 127-1008 Page 65

Page 66 Event Log Messages

69 - BCTERR_INVALID_PACERCLOCK
The clock period specified in the call to BCT StartPacer
isinvalid. Use avalid vaue for the pacer clock period.

70 - BCTERR_NOPACERCLOCK
The board specified in a call to BCTInitPacer does not
have an 8254 present and can not support pacer
functions. Use a board that supports pacers.

71 - BCTERR_PACERCLOCKINUSE
The pacer clock specified in acall to BCTInitPacer is
already in use. Use adifferent pacer that is not being
used.

72 - BCTERR _INITPACER_FAILED
Driver internal fatal error. The driver and / or hardware
encountered an un-resolvable problem. Check all
hardware is valid and restart system.

73 - BCTERR _STOPPACER_FAILED
Driver internal fatal error. The driver and / or hardware
encountered an un-resolvable problem. Check all
hardware is valid and restart system.

74 - BCTERR_ENABLEINTERUPT_FAILED
Driver internal fatal error. The driver and / or hardware
encountered an un-resolvable problem. Check all
hardware is valid and restart system.

75 - BCTERR _INITCLOCK_FAILED
The cdll to the BCTInitClock function failed.

Page 66 127-1008 Blue Chip Technology Ltd.

Event Log Messages Page 67

76 - BCTERR_UNEXPECTED CLOCKNO
Driver internal fatal error. The driver and / or hardware
encountered an un-resolvable problem. Check all
hardware is valid and restart system.

77 - BCTERR_UNSUPPORTED_BOARD
Driver internal fatal error. The driver and / or hardware
encountered an un-resolvable problem. Check all
hardware is valid and restart system.

78 - BCTERR_ADDPACER _FAILED
Driver internal fatal error. The driver and / or hardware
encountered an un-resolvable problem. Check all
hardware is valid and restart system.

79 - BCTERR_PACER_CLOCK_HANDLES INUSE
The handle specified in acal to BCTInitPacer is aready
inuse. Check that the handle being used is correct and
isnot in use elsewhere.

80 - BCTERR_PACER_NOT_INITIALISED
The pacer being requested for block I/O has not been
initialised. Check that the pacer has been initialised with
acall to BCTInitPacer.

81 - BCTERR INVALID_ INTERRUPT _INDEX
Driver internal fatal error. The driver and / or hardware
encountered an un-resolvable problem. Check all
hardware is valid and restart system.

Blue Chip Technology Ltd. 127-1008 Page 67

Page 68 Event Log Messages

82 - BCTERR FAILED _ENABLE_INTERRUPT
Driver internal fatal error. The driver and / or hardware
encountered an un-resolvable problem. Check all
hardware is valid and restart system.

83- BCTERR_FAILED_ADD_ACTION
Driver internal fatal error. The driver and / or hardware
encountered an un-resolvable problem. Check all
hardware is valid and restart system.

84 - BCTERR DISABLEINTERUPT FAILED
Driver internal fatal error. The driver and / or hardware
encountered an un-resolvable problem. Check all
hardware is valid and restart system.

85 - BCTERR_CANCELLED
The /O operation was cancelled by the operating
system. Check that al the open files are closed prior to
application exit.

86 - BCTERR FAILED PROGRAM_CNTRLCTRL
Driver internal fatal error. The driver and / or hardware
encountered an un-resolvable problem. Check all
hardware is valid and restart system.

87 - BCTERR INVALID BYTECOUNT
Driver internal fatal error. The driver and / or hardware
encountered an un-resolvable problem. Check all
hardware is valid and restart system.

Page 68 127-1008 Blue Chip Technology Ltd.

Event Log Messages Page 69

88 - BCTERR FAILED MAP BUFFER
Driver internal fatal error. The driver and / or hardware
encountered an un-resolvable problem. Check all
hardware is valid and restart system.

89 - BCTERR FAILED LOCK BUFFER
Driver internal fatal error. The driver and / or hardware
encountered an un-resolvable problem. Check all
hardware is valid and restart system.

90 - BCTERR_FAILED _MAP BUFFER_SYS
Driver internal fatal error. The driver and / or hardware
encountered an un-resolvable problem. Check all
hardware is valid and restart system.

91 - BCTERR INTERNAL_DRIVER ERROR
Driver internal fatal error. The driver and / or hardware
encountered an un-resolvable problem. Check all
hardware is valid and restart system.

92 - BCTERR_FAILED_CREATE_OVERLAP EVENT
An error has occurred within the DLL / WIN32
environment. Restart the system to correct the problem.

93 - BCTERR _FAILED_RESET_OVERLAP
An error has occurred within the DLL / WIN32
environment. Restart the system to correct the problem.

94 - BCT_IO_PENDING
An 1/O operation is till in progress. On detecting this
condition use the BCTWait procedure to wait for the
1/O to complete

Blue Chip Technology Ltd. 127-1008 Page 69

Page 70 Event Log Messages

95 - BCTERR WAIT_FAILED
The cdl to BCTWait failed.

96 - BCTERR_ALLOCATE_FAILED
The driver or library failed to alocate memory for the
requested buffer.

97 - BCTERR_RELEASE_FAILED
The driver or library failed to release the memory used
by an allocated buffer.

98 - BCTERR_INVALID IO _DIRECTION
An port has been set to adirection, INPUT, OUTPUT,
or BIDI that the port does not support. Check the port
directions specified in the initialisation functions.

99 - BCTERR INIT_ISODIG_MODES FAILED
Failed to initialise the digital /O onaPCI_DIO

100 - BCT_NOTIMPLEMENTED
The function requested is not available within this
release of driver.

101 - BCTERR _INVALID_DEVICE NUMBER
Driver internal fatal error. The driver and / or hardware
encountered an un-resolvable problem. Check all
hardware is valid and restart system.

102 - BCTERR_HANDLER_ABORTED
Driver internal fatal error. The driver and / or hardware
encountered an un-resolvable problem. Check all
hardware is valid and restart system.

Page 70 127-1008 Blue Chip Technology Ltd.

Event Log Messages Page 71

103 - BCTERR _FAILED_CLEAR HANDLER
Driver internal fatal error. The driver and / or hardware
encountered an un-resolvable problem. Check all
hardware is valid and restart system.

104 - BCTERR _UNSUPPORTED 8255 MODE
An operation mode specified for the 8255 in
BCTInit8255Modes is not supported. The modes
allowed are detailed in the manual with the
BCTInit8255Modes function definition.

105 - BCTERR_UNSUPPORTED_A_DIRECTION
The direction specified for port A inacall to
BCTInit8255Modes or BCTInitlsoDigModes is invalid.
Check that the port supports the mode specified.

106 - BCTERR_UNSUPPORTED_B_DIRECTION
The direction specified for port B in acal to
BCTInit8255Modes or BCTInitlsoDigModes is invalid.
Check that the port supports the mode specified.

107 - BCTERR_UNSUPPORTED_C DIRECTION
The direction specified for port Cinacall to
BCTInit8255Modes or BCTInitlsoDigModes is invalid.
Check that the port supports the mode specified.

108 - BCTERR_UNSUPPORTED I1SODIG_MODE
An operation mode specified for the PCI_DIO in
BCTInitlsoDig Modes is not supported. The modes
allowed are detailed in the manual with the
BCTInitlsoDigModes function definition.

Blue Chip Technology Ltd. 127-1008 Page 71

Page 72 Event Log Messages

109 - BCTERR_BLOCKIO_NOT_SUPPORTED
Block 1/0 operations are not supported on this device.

110 - BCTERR _ILLEGAL_COMBINATION
The combination of settings for an analogue output port
isinvalid. Check that only one mode setting is used.

111 - BCTERR_MISSING_OPTION
An option required for a function has not been specified.
Ensure that all required options are specified in all calls
to functions.

112 - BCTERR_INITAOUTMODES FAILED
Driver internal fatal error. The driver and / or hardware
encountered an un-resolvable problem. Check all
hardware is valid and restart system.

113 - BCTERR_INVALID_CHANNEL_NUMBER
The channel number specified in an analogue function
call isinvalid. Check that the channel numbers specified
are valid for the hardware being used.

114 - BCTERR _INPUT_CONVERSION_TIMEOUT
The conversion on the analogue input timed out.

115 - BCTERR _FIFO_ERROR
A problem was encountered with the FIFO. Typically
this occurs when continuing to read data from the FIFO
when it is no longer being filled.

Page 72 127-1008 Blue Chip Technology Ltd.

Event Log Messages Page 73

116 - BCTERR_AUTOSEL _NOT_SUPPORTED
The AUTOSEL option is not valid for the hardware
type being addressed. Use a mode that is supported by
the hardware.

117 - BCTERR_INVALID_SAMPLE_FREQUENCY
The frequency set for samplesis not valid. Check the
user documentation for valid values.

118 - BCTERR_READBLOCK_FAILED
Driver internal fatal error. The driver and / or hardware
encountered an un-resolvable problem. Check all
hardware is valid and restart system.

119 - BCTERR_PACER_CLOCK_HANDLE_INUSE
The handle specified for a pacer clock isin use. Check
the usage of handles within the application and allocate
another if necessary.

120 - BCTERR_FIFO_OVERFLOW
The FIFO has overflowed. The application is not
reading data from the FIFO fast enough to keep up with
the speed it is being added.

121 - BCTERR_AUTOCAL_FAILED
Driver internal fatal error. The driver and / or hardware
encountered an un-resolvable problem. Check all
hardware is valid and restart system.

122 - BCTERR_AUTOCAL_NOT_SUPPORTED
Auto calibration is not supported on the board specified.

Blue Chip Technology Ltd. 127-1008 Page 73

Page 74 Event Log Messages

123 - BCTERR_INVALID_COUNTER_VALUE
The value specified for a counter isnot valid. Check the
appropriate user documentation for valid values.

124 - BCTERR_INVALID_COUNTER_INPUT
The pin or port specified to be the input to the counter
isnot valid. Check the user documentation for valid
input pins.

125 - BCTERR_SETWDT_FAILED
Driver internal fatal error. The driver and / or hardware
encountered an un-resolvable problem. Check all
hardware is valid and restart system.

126 - BCTERR_READWDT _FAILED
Driver internal fatal error. The driver and / or hardware
encountered an un-resolvable problem. Check all
hardware is valid and restart system.

127 - BCTERR_WDTACCESS _TOOSOON
The watchdog timer functions are being called more
frequently than every two seconds. Reduce the
frequency with which the functions are called.

128 - BCTERR_ACCESS WDT_FAILED
Driver internal fatal error. The driver and / or hardware
encountered an un-resolvable problem. Check all
hardware is valid and restart system.

Page 74 127-1008 Blue Chip Technology Ltd.

Event Log Messages Page 75

129 - BCTERR _INVALID_WDT_OPERATION
Driver internal fatal error. The driver and / or hardware
encountered an un-resolvable problem. Check all
hardware is valid and restart system.

200 - BCTWARN_OUTPUT_VALUES CLIPPED
Not used in thislibrary.

300 - BCT_RUNNING
Not used in thislibrary.

301 - BCT_FINISHED
Not used in thislibrary.

302 - BCT_IDLE
Not used in thislibrary.

303 - BCT_OVERRUN
Not used in thislibrary.

Blue Chip Technology Ltd. 127-1008 Page 75

Page 76 Event Log Messages

5.2 BCTGETLASTERROR

If afunction call returns afatal error it may be possible to
extract further information from the driver using the function
call BCTGetLastError. Thisfunction is defined as follows:

BCT_DWORD BCTCet Last Err or (BCT_HANDLE *pHandl e,
BCT_DWORD * pEr r Code)

pHandle The handle used in the function returning the
fatal error.

pErrCode The internal Windows NT™ code.

If afunction call returns afatal error then a call should be made
to BCTGetLastError and contact Technical Services with the
resulting error code. They will then be able to determine the
cause of the problem.

NOTE: The last error is only updated when an error occurs and
is only supported by the simple I/O functions and not by all of
the pacer functions.

Page 76 127-1008 Blue Chip Technology Ltd.

Library Defined Types Page 77

A.0 LIBRARY DEFINED TYPES

The library introduces a number of simple data types and
structures that are used within the system. The behaviour of the
library and driver are neither predictable nor supportable if
other data types are used inappropriately.

A.1 Platform Independent Data Types
These platform independent types allow the drivers and

application software to be ported easily to systems running
Windows NT™ on none Intel™ processor hardware platforms.

BCT_INTS8 8-hit Signed Integer
BCT_INT16 16-bit Signed Integer
BCT_INT32 32-bit Signed Integer
BCT_BYTE 8-bit unsigned dataitem
BCT_WORD 16-bit unsigned data item
BCT_DWORD 32-bit unsigned data item

PBCT_BUFFER Pointer to ablock of 8-bit unsigned data
A.2 Enumerated Types

The BLUECHIP.H file defined a number of enumerated types
that contain the constant definitions for board type, ports, etc.
In BLUECHIP.BAS these are defined as zero ordered lists of
global constants as Visual Basic v4.0 has no support for
enumerated types.

These types are defined as follows:

Blue Chip Technology Ltd. 127-1008 Page 77

Page 78 Library Defined Types

t ypedef enum {
BCT_8255,
BCT_8254,
BCT_| SCDI G

} BCT_DEVI CETYPE;

t ypedef enum {
MODE O, // Al ports on the PIO are node 0
MODE_1, // Ports A& B are node 1 IO ports with
/1 port C as control
MODE 2, // Port Ais bi-directional IOwth
/1 port C as control
MODE_20, // Ports A and C are node 2 as MODE 2
/1 but port Bis used as node 0 IO
MODE 21 // Ports A and C are node 2 as MODE 2
/1 but port Bis used as node 1.
} BCT_8255_MODES;

t ypedef enum {

| NPUT, /1 Port is input

QUTPUT, /1 Port is output

Bl DI, /1 Port is bi-directional ie node 2)

NOCARE, /1 Port is not used in application -
/1 don’t care how setup

I NIN, /1l Port Cis all input

QUTQUT, /1l Port Cis all output

| NOUT, /1 Port C Upper nibble is input,
/1 lower nibble is output

QUTI N, /1 Port C Upper nibble is output,

/1 lower nibble is input

Page 78 127-1008 Blue Chip Technology Ltd.

Library Defined Types Page 79

} BCT_DI RECTI ONS;

t ypedef enum {
NO_HANDLER,
READ PACER,
BLOCK_SI NGLE_READ,
BLOCK DOUBLE BUFFER_READ,
BLOCK_SI NGLE WRI TE,
BLOCK DOUBLE BUFFER WRI TE,
BLOCK REPEATED WRI TE
} BCT_HANDLER

A.3 Structure Definitions

Except where expressly documented these structures should be
considered as Opaque and no guarantee is made that their
contents will not change in future releases.

BCT_HANDLE structure. A valid handle is required for each
function being called on aboard. Variables of type
BCT_HANDLE will need to be defined within the application
program and be passed to functions within the APl. However,
the application program should never manipulate the contents of
the structure.

typedef struct _BCT_HANDLE {

HANDLE Handl e;
OVERLAPPED Overl ap;
BCT_DWORD Devi ceType;

} BCT_HANDLE, *PBCT_HANDLE;

BCT_BOARD_ID gructure. A valid BCT_BOARD_ID
structure is required for each PCI data acquisition card being
used within the application. Again, the application program
should not manipulate the values within the structure.

Blue Chip Technology Ltd. 127-1008 Page 79

Page 80 Library Defined Types

typedef struct _BCT_BQARD | D {

HANDLE Handl e;
BCT_DWORD Seri al No;

char DevNane[30] ;
char G ockONane[30] ;
char G ock1Nane[30];
BCT_HANDLE hd ockO;
BCT_HANDLE hd ock1;
BCT_DWORD | ndex;
BCT_DWORD Devi ceType;

} BCT_BQOARD | D;

BCT_BUFFER structure. Thisis a buffer of data passed to the
pacer functions. The buffer should be requested using
BCTAllocate and then be filled in by the application program.
The semaphore flag within the BCT_BUFFER structure is used
when using double buffering to show when the buffer is full.

t ypedef struct _BCT_BUFFER {

ULONG Lengt h;
ULONG Sems,;
BCT_BYTE Buffer[];

} BCT_BUFFER, *PBCT_BUFFER

The BCT_WDT_SETDATA data structure defines the
following values that can be written to the watchdog timer
board:

Page 80 127-1008 Blue Chip Technology Ltd.

Library Defined Types Page 81

typedef struct _BCT_WDT_SETDATA {

BCT_BYTE | NO_Hi gh_3_3V, /1 3.3V Line High

/] Limt
BCT_BYTE | NO_Low 3 3V, /1 3.3V Line Low

Limt

BCT_BYTE | N1_H gh_5V,; /1 5V Line Hgh Limt
BCT_BYTE | Nl1_Low 5V; /1 5V Line, Low Limt
BCT_BYTE | N2_H gh_12V; /1 12V Line High

/] Limt
BCT_BYTE | N2_Low 12V, /1 12V Line Low Limt

BCT_BYTE | N3_Hi gh;

BCT_BYTE | N3_Low;

BCT_BYTE | N4_Hi gh;

BCT_BYTE | NA_Low;

BCT_BYTE | N5_Hi gh_M nus12V;// -12V High Limt
BCT_BYTE IN5_Low M nus12V; // -12V Low Limnit
BCT_BYTE | N6_Hi gh;

BCT_BYTE | N6_Low;

BCT_BYTE Over TenpHi gh; /1 Over Tenp. Setting
BCT_BYTE TenpHysteresisLow,// Tenp. hysteresis
/1 val.
BCT_BYTE FanlCount; /1 Fanl Count Limt
BCT_BYTE Fan2Count; /1 Fan2 Count Limnt
BCT_BYTE Fan3Count; /1 Fan3 Count Limt
BCT_BYTE FanRpm /1 Fan/ Rpm Cont r ol
/1 Byte

Blue Chip Technology Ltd. 127-1008 Page 81

Page 82

Library Defined Types

The BCT_WDT_READDATA data structure defines the
following values that can be read from the watchdog timer:

t ypedef struct BCT_WDT_READDATA {

BCT_BYTE

BCT_BYTE
BCT_BYTE

BCT_BYTE
BCT_BYTE
BCT_BYTE

BCT_BYTE
BCT_BYTE
BCT_BYTE
BCT_BYTE
BCT_BYTE
BCT_BYTE

BCT_BYTE
BCT_BYTE

INO_3 3V

I NL_5V:
I N2_12V:

I N3
| N4
IN5_M nusl2yV;

I N6;
Tenper at ur e;
Fanl1Count ;
Fan2Count ;
Fan3Count ;

Ext er nal | nput ;

/1 Current
/1 Val ue
/1 Current
/1l Current
/1 Val ue

/1l Current
/1 Val ue

/1 Current
/1l Current
/1l Current
/1l Current

3.3V Line

5V Li ne Val ue
12V Li ne

—-12V Li ne

Tenp. val ue
Fanl Count
Fan2 Count
Fan3 Count

// Bit O is the current

/| ext ernal

I nterrupt St at usi;
I nterrupt St at us2;

I nput Val ue

Page 82

127-1008

Blue Chip Technology Ltd.

